Milwaukee Admirals

GP: 67 | W: 51 | L: 12 | OTL: 4 | P: 106
GF: 237 | GA: 107 | PP%: 18.29% | PK%: 89.83%
DG: Stéphane Fournier | Morale : 90 | Moyenne d'Équipe : N/A
Prochain matchs #987 vs Abbotsford Heat
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Evgeny Svechnikov (R)XX100.0073737768736966625059626459505019100
2Evan RodriguesX99.0052506376646868657257646750505019100
3Peter HollandXXX99.0065507374726265637762596363646419100
4Jordan SzwarzXX99.0065726868726865665064636460505016000
5Valentin ZykovXX99.0076747771748264695056616458505018600
6Lukas SedlakX99.0081508476715465648160606250515119100
7Mike HalmoXX100.0063725964727268565050606057505019000
8Chandler StephensonX100.0069696972696966587359536250505019000
9Tim SchallerXX99.0057506575765964635061627050565619100
10Adam ClendeningX99.4054506584746557732560595750555517900
11Dakota MermisX100.0055715767716769502550505850505017300
12Philip Larsen (R)X100.0069507475677159732555566350606019100
13Travis Sanheim (R)X100.0058706975707578652560576250505015400
14Ben Thomas (R)X100.0059716762716972502553506150505019100
15Dysin Mayo (R)X100.0059687260686166502556506150505019000
16Jacob Middleton (R)X100.0057765760766568502550506050505015100
17Sergei Boikov (R)X100.0056735864736869502550505950505018600
18Gus YoungX100.0054725664726066502550505850505014400
Rayé
1Greg ChaseX100.0074686761685460506350506150505012000
2Jaedon Descheneau (R)X100.0067656662655158577153566153505011900
3Dominik Masin (R)X100.0055705862706973502550505750505013000
MOYENNE D'ÉQUIPE99.676365676971666659455556625252521720
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Darcy Kuemper100.007269588375667569757057777418200
2Jonas Gustavsson100.007170737670707171707031807913300
Rayé
MOYENNE D'ÉQUIPE100.00727066807368737073704479771580
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Marc Crawford72747570787725CAN551500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Travis SanheimMilwaukee Admirals (Nas)D65204565-79115119951951110.26%82130620.101624401552940112271120.00%000000.9900102457
2Valentin ZykovMilwaukee Admirals (Nas)C/LW672934633272101551232035514.29%5143421.42712195032600092477051.71%87800030.8823002724
3Jordan SzwarzMilwaukee Admirals (Nas)C/LW6517436022460831031561410.90%7114917.6910152536191022102471255.59%30400001.0401000257
4Peter HollandMilwaukee Admirals (Nas)C/LW/RW6622375931220591201571814.01%8130119.72417215032210172404065.08%58700100.9103000273
5Matt BenningNashville PredatorsD5612435537108014947133009.02%46127022.6991524992910112243210.00%000010.8700000413
6Philip LarsenMilwaukee Admirals (Nas)D6693847373807169116017.76%57144421.8951621843340001311100.00%000200.6500000146
7Tim SchallerMilwaukee Admirals (Nas)C/LW6618294723300561102092108.61%9122218.53511165130210141194156.51%54500000.7711000223
8Evan RodriguesMilwaukee Admirals (Nas)C66172845353552311316511110.30%1096114.572248660001673163.90%66200000.9400000152
9Lukas SedlakMilwaukee Admirals (Nas)C6620254537580119641333715.04%7112717.087512312490000151262.22%31500010.8000000515
10Adam ClendeningMilwaukee Admirals (Nas)D571131422450072471070010.28%41112519.7461622762520002229200.00%000000.7500000220
11Evgeny SvechnikovMilwaukee Admirals (Nas)C/LW6622194134601085941271317.32%893014.10437131100000278056.69%12700010.8801110344
12Linden VeyNashville PredatorsC/LW/RW32627331514031125114005.26%882825.90111122817100071802064.25%85600000.8004000232
13Ben ThomasMilwaukee Admirals (Nas)D678202832721011026410119.51%54128419.164812222770000250300.00%000000.4400101022
14Mike HalmoMilwaukee Admirals (Nas)C/LW6791524216125635393329.68%771310.640332240004461146.67%6000000.6700221111
15Chandler StephensonMilwaukee Admirals (Nas)C6791524194205747831210.84%380712.063710211480001503059.56%13600010.5900000021
16Phillip Di GuiseppeNashville PredatorsC/LW297101746008739580012.07%367923.433471613200001101356.52%13800000.5004000211
17Sergei BoikovMilwaukee Admirals (Nas)D6155101481156520230321.74%2475912.46314741000186000.00%000000.2600011003
18Dysin MayoMilwaukee Admirals (Nas)D6725714500703121009.52%2372910.890223340000420050.00%400000.1900000100
19Dakota MermisMilwaukee Admirals (Nas)D461566395521317005.88%1754711.90101334000154000.00%000000.2200100000
20Jaedon DescheneauMilwaukee Admirals (Nas)LW1914542011712008.33%11085.690111110001130058.33%1200000.9300000000
21Jacob MiddletonMilwaukee Admirals (Nas)D38033144102062000.00%42145.660000400007000.00%000000.2800002000
22Gus YoungMilwaukee Admirals (Nas)D291123956360116.67%41033.581123700014000.00%000000.3900001000
23Dominik MasinMilwaukee Admirals (Nas)D26011340604000.00%41746.72011011000016000.00%000000.1100000000
24Greg ChaseMilwaukee Admirals (Nas)C18000320321000.00%1522.90000014000080076.19%2100000.0000000000
Stats d'équipe Total ou en Moyenne12722464837294441090110157213572176195911.31%4332027915.94911752667593654246542891441359.55%464500370.723176410394754
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Darcy KuemperMilwaukee Admirals (Nas)60461120.9281.4135222158311560010.929145951141
2Jonas GustavssonMilwaukee Admirals (Nas)94120.8741.8844601141110100.4005730010
Stats d'équipe Total ou en Moyenne69501240.9231.4739682169712670110.7891966351151


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Adam ClendeningMilwaukee Admirals (Nas)D241992-10-26No190 Lbs6 ft0NoNoNo2Avec RestrictionPro & Farm900,000$0$0$No900,000$
Ben ThomasMilwaukee Admirals (Nas)D201996-05-27Yes190 Lbs6 ft1NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Chandler StephensonMilwaukee Admirals (Nas)C221994-04-22No190 Lbs5 ft11NoNoNo2Contrat d'EntréePro & Farm300,000$0$0$No300,000$
Dakota MermisMilwaukee Admirals (Nas)D231994-01-05No196 Lbs6 ft0NoNoNo3Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$
Darcy KuemperMilwaukee Admirals (Nas)G261990-05-04No205 Lbs6 ft5NoNoNo4Avec RestrictionPro & Farm500,000$0$0$No500,000$500,000$500,000$
Dominik MasinMilwaukee Admirals (Nas)D201996-01-31Yes189 Lbs6 ft2NoNoNo4Contrat d'EntréePro & Farm500,000$0$0$No500,000$500,000$500,000$
Dysin MayoMilwaukee Admirals (Nas)D201996-08-16Yes185 Lbs6 ft0NoNoNo4Contrat d'EntréePro & Farm500,000$0$0$No500,000$500,000$500,000$
Evan RodriguesMilwaukee Admirals (Nas)C231993-07-28No179 Lbs5 ft11NoNoNo3Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$
Evgeny SvechnikovMilwaukee Admirals (Nas)C/LW201996-10-30Yes199 Lbs6 ft2NoNoNo4Contrat d'EntréePro & Farm900,000$0$0$No900,000$900,000$900,000$
Greg ChaseMilwaukee Admirals (Nas)C221994-12-31No189 Lbs6 ft0NoNoNo2Contrat d'EntréePro & Farm894,000$0$0$No894,000$
Gus YoungMilwaukee Admirals (Nas)D251991-07-10No190 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Jacob MiddletonMilwaukee Admirals (Nas)D211996-01-01Yes200 Lbs6 ft3NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Jaedon DescheneauMilwaukee Admirals (Nas)LW211995-02-21Yes186 Lbs5 ft9NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Jonas GustavssonMilwaukee Admirals (Nas)G321984-10-24No192 Lbs6 ft3NoNoNo1Sans RestrictionPro & Farm2,500,000$0$0$No
Jordan SzwarzMilwaukee Admirals (Nas)C/LW251991-05-13No200 Lbs5 ft11NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Lukas SedlakMilwaukee Admirals (Nas)C231993-02-24No198 Lbs6 ft0NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Mike HalmoMilwaukee Admirals (Nas)C/LW251991-05-14No209 Lbs5 ft10NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Peter HollandMilwaukee Admirals (Nas)C/LW/RW251991-01-14No194 Lbs6 ft2NoNoNo1Avec RestrictionPro & Farm500,000$0$0$No
Philip LarsenMilwaukee Admirals (Nas)D271989-12-07Yes182 Lbs6 ft0NoNoNo2Avec RestrictionPro & Farm450,000$0$0$No450,000$
Sergei BoikovMilwaukee Admirals (Nas)D201996-01-23Yes195 Lbs6 ft2NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Tim SchallerMilwaukee Admirals (Nas)C/LW261990-11-16No206 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Travis SanheimMilwaukee Admirals (Nas)D201996-03-28Yes181 Lbs6 ft3NoNoNo4Contrat d'EntréePro & Farm900,000$0$0$No900,000$900,000$900,000$
Valentin ZykovMilwaukee Admirals (Nas)C/LW211995-05-14No209 Lbs6 ft0NoNoNo2Contrat d'EntréePro & Farm894,000$0$0$No894,000$
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2323.09194 Lbs6 ft12.74566,870$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Valentin ZykovPeter HollandLukas Sedlak40122
2Jordan SzwarzTim SchallerEvan Rodrigues30122
3Evgeny SvechnikovLukas SedlakPeter Holland20122
4Mike HalmoEvan RodriguesValentin Zykov10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Philip LarsenTravis Sanheim40122
2Ben ThomasSergei Boikov30122
3Dysin MayoDakota Mermis20122
4Gus Young10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Valentin ZykovPeter HollandLukas Sedlak60122
2Jordan SzwarzTim SchallerEvan Rodrigues40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Philip LarsenTravis Sanheim60122
2Ben ThomasSergei Boikov40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Peter HollandValentin Zykov60122
2Tim SchallerJordan Szwarz40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Philip LarsenTravis Sanheim60122
2Ben ThomasSergei Boikov40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Peter Holland60122Philip LarsenTravis Sanheim60122
2Valentin Zykov40122Ben ThomasSergei Boikov40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Peter HollandValentin Zykov60122
2Tim SchallerJordan Szwarz40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Philip LarsenTravis Sanheim60122
2Ben ThomasSergei Boikov40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Valentin ZykovPeter HollandLukas SedlakPhilip LarsenTravis Sanheim
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Valentin ZykovPeter HollandLukas SedlakPhilip LarsenTravis Sanheim
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Chandler Stephenson, Evgeny Svechnikov, Mike HalmoChandler Stephenson, Evgeny SvechnikovMike Halmo
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Jacob Middleton, Dysin Mayo, Dakota MermisJacob MiddletonDysin Mayo, Dakota Mermis
Tirs de Pénalité
Peter Holland, Valentin Zykov, Tim Schaller, Jordan Szwarz, Lukas Sedlak
Gardien
#1 : Darcy Kuemper, #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Abbotsford Heat11000000312110000003120000000000021.000358008789575356626776113217811216116.67%20100.00%01313218360.15%1017181556.03%59394063.09%193614161334446784425
2Adirondack Phantoms22000000725110000003121100000041341.000713200087895755366267761132496594816318.75%130100.00%01313218360.15%1017181556.03%59394063.09%193614161334446784425
3Albany Devils21000010752100000105411100000021141.0007101700878957549662677611325513364414321.43%18288.89%01313218360.15%1017181556.03%59394063.09%193614161334446784425
4Binghampton Senateurs33000000725110000003212200000040461.0007142102878957578662677611325518486215213.33%23291.30%01313218360.15%1017181556.03%59394063.09%193614161334446784425
5Bridgeport Sound Tigers2020000026-41010000013-21010000013-200.0002460087895754466267761132351016491815.56%8275.00%01313218360.15%1017181556.03%59394063.09%193614161334446784425
6Charlotte Checkers330000002222011000000909220000001321161.00022406201878957512966267761132421632759444.44%150100.00%01313218360.15%1017181556.03%59394063.09%193614161334446784425
7Chicago Wolves210000016331000000112-11100000051430.750611170087895755766267761132321222352328.70%100100.00%01313218360.15%1017181556.03%59394063.09%193614161334446784425
8Connecticut Whale220000001349110000008351100000051441.00013243700878957510166267761132331024455120.00%12191.67%11313218360.15%1017181556.03%59394063.09%193614161334446784425
9Grand Rapids Griffins4400000022517220000001001022000000125781.0002241630287895751416626776113278305210525728.00%26292.31%11313218360.15%1017181556.03%59394063.09%193614161334446784425
10Hamilton Bulldogs2110000025-3110000002111010000004-420.500235008789575486626776113226526321200.00%13376.92%01313218360.15%1017181556.03%59394063.09%193614161334446784425
11Hershey Bears11000000321000000000001100000032121.000347008789575286626776113215512179111.11%60100.00%01313218360.15%1017181556.03%59394063.09%193614161334446784425
12Houston Aeros5410000026179330000002010102110000067-180.800264672008789575154662677611321304584120371335.14%25388.00%01313218360.15%1017181556.03%59394063.09%193614161334446784425
13Lake Erie Monsters3300000012111110000003032200000091861.00012223402878957510166267761132541530576350.00%15193.33%01313218360.15%1017181556.03%59394063.09%193614161334446784425
14Manchester Monarchs2200000013310110000007251100000061541.000132235008789575966626776113236725419555.56%9277.78%01313218360.15%1017181556.03%59394063.09%193614161334446784425
15Norfolk Admirals11000000615000000000001100000061521.00061218008789575266626776113226329263133.33%80100.00%01313218360.15%1017181556.03%59394063.09%193614161334446784425
16Oklahoma City Barons2110000056-1110000003211010000024-220.50058130087895755266267761132531438517228.57%17382.35%01313218360.15%1017181556.03%59394063.09%193614161334446784425
17Peoria Rivermen10000010321100000103210000000000021.000347008789575226626776113227112227200.00%11190.91%01313218360.15%1017181556.03%59394063.09%193614161334446784425
18Portland Pirates22000000835110000002021100000063341.0008162401878957559662677611324118303919421.05%13284.62%01313218360.15%1017181556.03%59394063.09%193614161334446784425
19Providence Bruins211000007431010000023-11100000051420.500713200087895754866267761132409363810220.00%8187.50%01313218360.15%1017181556.03%59394063.09%193614161334446784425
20Rochester Americans32000001532220000003031000000123-150.8335101502878957568662677611325521575925312.00%25292.00%01313218360.15%1017181556.03%59394063.09%193614161334446784425
21Rockford IceHogs22000000422000000000002200000042241.00048120187895756266267761132328163120315.00%7185.71%01313218360.15%1017181556.03%59394063.09%193614161334446784425
22San Antonio Rampage31100010936210000108171010000012-140.6679162501878957597662677611324517366922313.64%18194.44%01313218360.15%1017181556.03%59394063.09%193614161334446784425
23Springfield Falcons42200000761220000005142020000025-340.5007121911878957575662677611321153079732913.45%36294.44%01313218360.15%1017181556.03%59394063.09%193614161334446784425
24St-John Ice Caps21000010532000000000002100001053241.0005813008789575546626776113235620391616.25%10370.00%01313218360.15%1017181556.03%59394063.09%193614161334446784425
25Syracuse Crunch2110000045-1110000003121010000014-320.5004812008789575346626776113247930412229.09%15473.33%01313218360.15%1017181556.03%59394063.09%193614161334446784425
26Texas Stars32100000642211000003301100000031240.667610160187895756166267761132581569572129.52%27388.89%01313218360.15%1017181556.03%59394063.09%193614161334446784425
27Toronto Marlies330000002011922000000131121100000070761.000203656028789575132662677611324010248311654.55%110100.00%01313218360.15%1017181556.03%59394063.09%193614161334446784425
Total6747120014323710713033244001311224775342380001211560551060.79123742666311687895751963662677611321329383101214524327918.29%4234389.83%21313218360.15%1017181556.03%59394063.09%193614161334446784425
29Wilkes-Barre Penguins2000010124-21000010012-11000000112-120.5002460087895754666267761132469414810220.00%18288.89%01313218360.15%1017181556.03%59394063.09%193614161334446784425
30Worchester Sharks1010000012-11010000012-10000000000000.00012300878957513662677611321238201119.09%40100.00%01313218360.15%1017181556.03%59394063.09%193614161334446784425
_Since Last GM Reset6747120014323710713033244001311224775342380001211560551060.79123742666311687895751963662677611321329383101214524327918.29%4234389.83%21313218360.15%1017181556.03%59394063.09%193614161334446784425
_Vs Conference3728500022145559020161000218123581712400001643232620.83814526040501287895751159662677611326892275198222264921.68%2222090.99%11313218360.15%1017181556.03%59394063.09%193614161334446784425
_Vs Division11700001142192362000011179855000000251015170.77342761180187895753386626776113221765163233781620.51%63788.89%01313218360.15%1017181556.03%59394063.09%193614161334446784425

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
67106W42374266631963132938310121452116
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
6747120143237107
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
33244013112247
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
34238001211560
Derniers 10 Matchs
WLOTWOTL SOWSOL
710002
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
4327918.29%4234389.83%2
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
662677611328789575
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1313218360.15%1017181556.03%59394063.09%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
193614161334446784425


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2017-10-029Houston Aeros6Milwaukee Admirals7WSommaire du Match
4 - 2017-10-0413Milwaukee Admirals2Lake Erie Monsters1WSommaire du Match
5 - 2017-10-0537Toronto Marlies1Milwaukee Admirals6WSommaire du Match
9 - 2017-10-0951Milwaukee Admirals4Houston Aeros2WSommaire du Match
10 - 2017-10-1062Milwaukee Admirals2Binghampton Senateurs0WSommaire du Match
11 - 2017-10-1167Milwaukee Admirals4Grand Rapids Griffins3WSommaire du Match
14 - 2017-10-1488San Antonio Rampage1Milwaukee Admirals7WSommaire du Match
17 - 2017-10-17107Springfield Falcons1Milwaukee Admirals3WSommaire du Match
18 - 2017-10-18123Milwaukee Admirals8Grand Rapids Griffins2WSommaire du Match
20 - 2017-10-20139Oklahoma City Barons2Milwaukee Admirals3WSommaire du Match
23 - 2017-10-23160Milwaukee Admirals1Rockford IceHogs0WSommaire du Match
24 - 2017-10-24171Grand Rapids Griffins0Milwaukee Admirals6WSommaire du Match
25 - 2017-10-25182Milwaukee Admirals2St-John Ice Caps1WXXSommaire du Match
29 - 2017-10-29199Milwaukee Admirals1Springfield Falcons2LSommaire du Match
30 - 2017-10-30207Houston Aeros1Milwaukee Admirals7WSommaire du Match
32 - 2017-11-01229Texas Stars0Milwaukee Admirals2WSommaire du Match
34 - 2017-11-03246Milwaukee Admirals0Hamilton Bulldogs4LSommaire du Match
35 - 2017-11-04254Milwaukee Admirals7Toronto Marlies0WSommaire du Match
36 - 2017-11-05265Wilkes-Barre Penguins2Milwaukee Admirals1LXSommaire du Match
39 - 2017-11-08284Milwaukee Admirals6Norfolk Admirals1WSommaire du Match
40 - 2017-11-09294Manchester Monarchs2Milwaukee Admirals7WSommaire du Match
42 - 2017-11-11314Milwaukee Admirals3Hershey Bears2WSommaire du Match
43 - 2017-11-12325Adirondack Phantoms1Milwaukee Admirals3WSommaire du Match
45 - 2017-11-14340Milwaukee Admirals5Connecticut Whale1WSommaire du Match
46 - 2017-11-15353Milwaukee Admirals1Springfield Falcons3LSommaire du Match
47 - 2017-11-16360Albany Devils4Milwaukee Admirals5WXXSommaire du Match
50 - 2017-11-19378Milwaukee Admirals2Rochester Americans3LXXSommaire du Match
52 - 2017-11-21389Rochester Americans0Milwaukee Admirals2WSommaire du Match
54 - 2017-11-23412Texas Stars3Milwaukee Admirals1LSommaire du Match
57 - 2017-11-26427Milwaukee Admirals3St-John Ice Caps2WSommaire du Match
58 - 2017-11-27446Syracuse Crunch1Milwaukee Admirals3WSommaire du Match
60 - 2017-11-29461Milwaukee Admirals4Adirondack Phantoms1WSommaire du Match
61 - 2017-11-30474Providence Bruins3Milwaukee Admirals2LSommaire du Match
63 - 2017-12-02491Milwaukee Admirals6Portland Pirates3WSommaire du Match
64 - 2017-12-03500Houston Aeros3Milwaukee Admirals6WSommaire du Match
69 - 2017-12-08526Springfield Falcons0Milwaukee Admirals2WSommaire du Match
70 - 2017-12-09542Milwaukee Admirals2Binghampton Senateurs0WSommaire du Match
74 - 2017-12-13561Binghampton Senateurs2Milwaukee Admirals3WSommaire du Match
76 - 2017-12-15578Milwaukee Admirals1Bridgeport Sound Tigers3LSommaire du Match
77 - 2017-12-16588Charlotte Checkers0Milwaukee Admirals9WSommaire du Match
81 - 2017-12-20608Milwaukee Admirals6Manchester Monarchs1WSommaire du Match
83 - 2017-12-22619Toronto Marlies0Milwaukee Admirals7WSommaire du Match
88 - 2017-12-27643Abbotsford Heat1Milwaukee Admirals3WSommaire du Match
89 - 2017-12-28655Milwaukee Admirals5Chicago Wolves1WSommaire du Match
91 - 2017-12-30674Worchester Sharks2Milwaukee Admirals1LSommaire du Match
93 - 2018-01-01688Milwaukee Admirals6Charlotte Checkers1WSommaire du Match
94 - 2018-01-02702Bridgeport Sound Tigers3Milwaukee Admirals1LSommaire du Match
97 - 2018-01-05721Milwaukee Admirals7Lake Erie Monsters0WSommaire du Match
100 - 2018-01-08734Peoria Rivermen2Milwaukee Admirals3WXXSommaire du Match
102 - 2018-01-10756Milwaukee Admirals1San Antonio Rampage2LSommaire du Match
103 - 2018-01-11763Milwaukee Admirals1Syracuse Crunch4LSommaire du Match
104 - 2018-01-12770Portland Pirates0Milwaukee Admirals2WSommaire du Match
106 - 2018-01-14793San Antonio Rampage0Milwaukee Admirals1WXXSommaire du Match
110 - 2018-01-18816Grand Rapids Griffins0Milwaukee Admirals4WSommaire du Match
111 - 2018-01-19818Milwaukee Admirals2Albany Devils1WSommaire du Match
112 - 2018-01-20835Milwaukee Admirals3Rockford IceHogs2WSommaire du Match
114 - 2018-01-22848Milwaukee Admirals2Oklahoma City Barons4LSommaire du Match
115 - 2018-01-23859Milwaukee Admirals1Wilkes-Barre Penguins2LXXSommaire du Match
116 - 2018-01-24864Rochester Americans0Milwaukee Admirals1WSommaire du Match
119 - 2018-01-27889Lake Erie Monsters0Milwaukee Admirals3WSommaire du Match
120 - 2018-01-28899Milwaukee Admirals7Charlotte Checkers1WSommaire du Match
122 - 2018-01-30918Chicago Wolves2Milwaukee Admirals1LXXSommaire du Match
123 - 2018-01-31926Milwaukee Admirals2Houston Aeros5LSommaire du Match
124 - 2018-02-01940Milwaukee Admirals3Texas Stars1WSommaire du Match
125 - 2018-02-02953Hamilton Bulldogs1Milwaukee Admirals2WSommaire du Match
129 - 2018-02-06967Milwaukee Admirals5Providence Bruins1WSommaire du Match
131 - 2018-02-08980Connecticut Whale3Milwaukee Admirals8WSommaire du Match
132 - 2018-02-09987Milwaukee Admirals-Abbotsford Heat-
137 - 2018-02-141012Norfolk Admirals-Milwaukee Admirals-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
141 - 2018-02-181037Oklahoma City Barons-Milwaukee Admirals-
142 - 2018-02-191057Milwaukee Admirals-Hamilton Bulldogs-
144 - 2018-02-211067Worchester Sharks-Milwaukee Admirals-
145 - 2018-02-221077Milwaukee Admirals-Abbotsford Heat-
147 - 2018-02-241097Springfield Falcons-Milwaukee Admirals-
149 - 2018-02-261107Milwaukee Admirals-Peoria Rivermen-
152 - 2018-03-011127Rockford IceHogs-Milwaukee Admirals-
153 - 2018-03-021134Milwaukee Admirals-Peoria Rivermen-
155 - 2018-03-041155Hershey Bears-Milwaukee Admirals-
156 - 2018-03-051161Milwaukee Admirals-Worchester Sharks-
158 - 2018-03-071169Milwaukee Admirals-Grand Rapids Griffins-
163 - 2018-03-121200St-John Ice Caps-Milwaukee Admirals-
168 - 2018-03-171230Chicago Wolves-Milwaukee Admirals-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
8 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
481,556$ 130,380$ 78,550$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 93,980$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 38 3,730$ 141,740$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1267471200143237107130332440013112247753423800012115605510623742666311687895751963662677611321329383101214524327918.29%4234389.83%21313218360.15%1017181556.03%59394063.09%193614161334446784425
Total Saison Régulière67471200143237107130332440013112247753423800012115605510623742666311687895751963662677611321329383101214524327918.29%4234389.83%21313218360.15%1017181556.03%59394063.09%193614161334446784425