New York Rangers

GP: 67 | W: 27 | L: 36 | OTL: 4 | P: 58
GF: 178 | GA: 239 | PP%: 20.58% | PK%: 76.30%
DG: Sach Verville | Morale : 30 | Moyenne d'Équipe : N/A
Prochain matchs #996 vs Toronto Maple Leafs
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Anze KopitarX99.0081508590949992949491759784949413900
2Andrew ShawXX99.0095506081808287798179747350757214700
3Tom Pyatt (R)XXX100.0070508470777585555074708263817917300
4Timo Meier (R)XXX100.0092508891757469805063646650656412600
5Jarome IginlaXX99.0088507777918296775173757550999914600
6Dylan LarkinX99.0067508398769194846275788450757213300
7Michael CammalleriXX100.0063508690758875795783737290858411800
8Dwight KingX100.0088509271967975675059607475868114700
9Jonathan MarchessaultXX100.0088508293638878865482927950767013800
10Joel WardXXX100.0072508578958590746879718050939513200
11Nail YakupovXXX100.0065508692778075785065656550767112900
12Matt StajanX100.0060507176837496698277588550848513400
13Shea WeberX99.0095508592999890932579789950909512800
14Ivan Provorov (R)X99.0088508894788990852576699050717014000
15Oscar KlefbomX100.0072509988869279882577758750767113800
16Marc StaalX100.0080508778908489752563628750848214400
17Steve OleksyX100.0069505368706874592559607550797313100
18Slater KoekkoekX100.0057507573696578642561606850505011800
Rayé
1Colton HargroveX100.0058797764796967535051516350505012000
2Mitch CallahanXXX100.0067707769707767625060606357505013000
3Adam PardyX100.0069846968745755502550507150676812000
4Ryan MurrayX95.6571508791838387782564638350777314400
MOYENNE D'ÉQUIPE99.507554818181818174487067785577751350
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Alex Lyon (R)100.007078847869756670707031686711400
2Brian Elliott96.008488899085858082838483868613300
Rayé
1Stephon Williams100.005670707762626265626231596111700
MOYENNE D'ÉQUIPE98.67707981827274697272724871711210
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Jack Capuano99918999896789USA5063,000,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Anze KopitarNew York RangersC60233356-124159621221471210.75%33151625.28710174818400022393056.95%209500000.7401100443
2Dylan LarkinNew York RangersLW67203050-511522100223548.97%12144821.62615214321411231385140.65%24600000.6901010327
3Shea WeberNew York RangersD65202646-910410179911552312.90%106158724.4311516691670001185210.00%000010.5800100134
4Oscar KlefbomNew York RangersD67113344-221753397141327.80%70144021.5041317661750112217300.00%000000.6100001210
5Ivan ProvorovNew York RangersD6573643-10615878691357.69%100150323.1331215421470110156010.00%000000.5700001022
6Jonathan MarchessaultNew York RangersC/RW62212142-6415110862073810.14%9116518.80347128200031105341.06%15100000.7211001561
7Andrew ShawNew York RangersLW/RW67102333-1455519568120398.33%7111016.58077181190002843063.06%11100000.5900001211
8Michael CammalleriNew York RangersC/LW61102333-130013118128127.81%7116519.1037103113810141511242.52%122300000.5700000111
9Jarome IginlaNew York RangersLW/RW67121527-13655163451192010.08%8123418.42358282000110172041.67%9600000.4400000210
10Ryan MurrayNew York RangersD6532124-11255304565004.62%4994914.611781589000038000.00%000000.5100100000
11Joel WardNew York RangersC/LW/RW6191019-14802262790311.39%387514.352241280000090148.82%29700000.4300000013
12Marc StaalNew York RangersD6731417-2583151025260115.00%83117217.51134261200000164000.00%000000.2900111010
13Timo MeierNew York RangersC/LW/RW425914-11200533478136.41%565815.68246151010001360038.10%18900000.4300000000
14Nail YakupovNew York RangersC/LW/RW645712-52064762008.06%56309.850001110000261134.94%39500000.3800000011
15Tom PyattNew York RangersC/LW/RW655611-121403525501210.00%96039.29000010000180032.50%4000000.3600000000
16Dwight KingNew York RangersLW674610-15200663145018.89%56159.1800003000091037.70%6100000.3300000000
17Steve OleksyNew York RangersD48246-83807716130015.38%4265913.7300003000010010.00%000000.1800000000
18Matt StajanNew York RangersC59246-72085944034.55%75609.500009610001530048.95%62100100.2100000000
19Mitch CallahanNew York RangersC/LW/RW39303-14801611200015.00%03368.6300000000050028.22%16300000.1800000000
20Colton HargroveNew York RangersLW32112-14757540025.00%02477.7500000000010040.20%10200000.1600100000
21Slater KoekkoekNew York RangersD4101102715383000.00%42215.41000000000500100.00%200000.0900201000
22Adam PardyNew York RangersD19000-3201003000.00%7764.010000500009000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne1250176323499-2436518513331298192432589.15%5711978015.8246941404351909246191691261147.81%579200110.5013726202423
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Brian ElliottNew York Rangers41141760.9072.8922844211011870010.80053726322
2Alex LyonNew York Rangers3482210.8724.181692201189190010.00003232211
3Stephon WilliamsNew York Rangers30000.8484.651290010660000.0000016000
Stats d'équipe Total ou en Moyenne78223970.8903.4841066223821720020.80056974533


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Adam PardyNew York RangersD321984-03-28No227 Lbs6 ft4NoNoNo2Sans RestrictionPro & Farm300,000$300,000$72,832$No300,000$
Alex LyonNew York RangersG241992-12-08Yes201 Lbs6 ft1NoNoNo4Avec RestrictionPro & Farm300,000$300,000$72,832$No300,000$300,000$300,000$
Andrew ShawNew York RangersLW/RW261990-07-20No179 Lbs5 ft11NoNoNo2Avec RestrictionPro & Farm1,000,000$1,000,000$242,775$No1,000,000$
Anze KopitarNew York RangersC291987-08-23No224 Lbs6 ft3NoNoNo1Sans RestrictionPro & Farm6,500,000$6,500,000$1,578,035$No
Brian ElliottNew York RangersG311985-04-09No209 Lbs6 ft2NoNoNo1Sans RestrictionPro & Farm6,500,000$6,500,000$1,578,035$No
Colton HargroveNew York RangersLW241992-06-25No216 Lbs6 ft2NoNoNo3Avec RestrictionPro & Farm300,000$300,000$72,832$No300,000$300,000$
Dwight KingNew York RangersLW271989-07-05No229 Lbs6 ft4NoNoNo1Avec RestrictionPro & Farm500,000$500,000$121,387$No
Dylan LarkinNew York RangersLW201996-07-29No190 Lbs6 ft1NoNoNo3Contrat d'EntréePro & Farm900,000$900,000$218,497$No900,000$900,000$
Ivan ProvorovNew York RangersD201997-01-13Yes201 Lbs6 ft1NoNoNo4Contrat d'EntréePro & Farm900,000$900,000$218,497$No900,000$900,000$900,000$
Jarome IginlaNew York RangersLW/RW391977-06-30No210 Lbs6 ft1NoNoNo2Sans RestrictionPro & Farm5,300,000$5,300,000$1,286,705$No5,300,000$
Joel WardNew York RangersC/LW/RW361980-12-02No226 Lbs6 ft1NoNoNo3Sans RestrictionPro & Farm4,140,000$4,140,000$1,005,087$No4,140,000$4,140,000$
Jonathan MarchessaultNew York RangersC/RW261990-12-27No184 Lbs5 ft8NoNoNo1Avec RestrictionPro & Farm300,000$300,000$72,832$No
Marc StaalNew York RangersD301987-01-12No207 Lbs6 ft4NoNoNo3Sans RestrictionPro & Farm2,500,000$2,500,000$606,936$No2,500,000$2,500,000$
Matt StajanNew York RangersC331983-12-18No192 Lbs6 ft1NoNoNo3Sans RestrictionPro & Farm1,000,000$1,000,000$242,775$No1,000,000$1,000,000$
Michael CammalleriNew York RangersC/LW341982-06-07No190 Lbs5 ft9NoNoNo1Sans RestrictionPro & Farm3,500,000$3,500,000$849,711$No
Mitch CallahanNew York RangersC/LW/RW251991-08-16No190 Lbs6 ft0NoNoNo1Avec RestrictionPro & Farm300,000$300,000$72,832$No
Nail YakupovNew York RangersC/LW/RW231993-10-05No197 Lbs5 ft11NoNoNo3Avec RestrictionPro & Farm500,000$500,000$121,387$No500,000$500,000$
Oscar KlefbomNew York RangersD231993-07-19No210 Lbs6 ft3NoNoNo1Avec RestrictionPro & Farm300,000$300,000$72,832$No
Ryan MurrayNew York RangersD231993-09-26No208 Lbs6 ft1NoNoNo1Avec RestrictionPro & Farm500,000$500,000$121,387$No
Shea WeberNew York RangersD311985-08-13No233 Lbs6 ft4NoNoNo1Sans RestrictionPro & Farm6,500,000$6,500,000$1,578,035$No
Slater KoekkoekNew York RangersD221994-02-18No184 Lbs6 ft2NoNoNo2Contrat d'EntréePro & Farm300,000$300,000$72,832$No300,000$
Stephon WilliamsNew York RangersG231993-04-28No190 Lbs6 ft2NoNoNo3Avec RestrictionPro & Farm300,000$300,000$72,832$No300,000$300,000$
Steve OleksyNew York RangersD301986-02-04No190 Lbs6 ft0NoNoNo4Sans RestrictionPro & Farm300,000$300,000$72,832$No300,000$300,000$300,000$
Timo MeierNew York RangersC/LW/RW201996-10-08Yes209 Lbs6 ft1NoNoNo4Contrat d'EntréePro & Farm300,000$300,000$72,832$No300,000$300,000$300,000$
Tom PyattNew York RangersC/LW/RW291987-02-14Yes188 Lbs5 ft11NoNoNo3Sans RestrictionPro & Farm500,000$500,000$121,387$No500,000$500,000$
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2527.20203 Lbs6 ft12.281,749,600$

Somme Salaire 1e Année Somme Salaire 2e Année Somme Salaire 3e Année Somme Salaire 4e Année Somme Salaire 5e Année
43,740,000$18,840,000$11,940,000$1,800,000$0$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Dylan LarkinAnze KopitarJarome Iginla40122
2Andrew ShawJoel WardJonathan Marchessault30122
3Dwight KingMichael CammalleriTimo Meier20122
4Joel WardMatt StajanAnze Kopitar10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ivan ProvorovShea Weber40122
2Oscar KlefbomSteve Oleksy30122
3Ivan ProvorovMarc Staal20122
4Slater KoekkoekShea Weber10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Dylan LarkinAnze KopitarJarome Iginla60122
2Andrew ShawMatt StajanTimo Meier40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ivan ProvorovMarc Staal60122
2Oscar KlefbomShea Weber40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Anze KopitarDylan Larkin60122
2Matt StajanAndrew Shaw40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Marc StaalShea Weber60122
2Oscar KlefbomIvan Provorov40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Anze Kopitar60122Marc StaalIvan Provorov60122
2Matt Stajan40122Oscar KlefbomShea Weber40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Dylan LarkinAnze Kopitar60122
2Jarome IginlaAndrew Shaw40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Shea WeberMarc Staal60122
2Oscar KlefbomIvan Provorov40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Dylan LarkinAnze KopitarJarome IginlaIvan ProvorovShea Weber
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Dylan LarkinAnze KopitarJarome IginlaIvan ProvorovShea Weber
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Dylan Larkin, Dwight King, Anze KopitarAnze Kopitar, Dwight KingAnze Kopitar
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Shea Weber, Marc Staal, Oscar KlefbomShea WeberMarc Staal, Oscar Klefbom
Tirs de Pénalité
Dylan Larkin, Anze Kopitar, Jarome Iginla, Andrew Shaw, Matt Stajan
Gardien
#1 : Brian Elliott, #2 : Alex Lyon


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Anaheim Ducks11000000431110000004310000000000021.0004711000130289910032924174250.00%6183.33%01113232447.89%1123237647.26%520103150.44%2315257116
2Boston Bruins422000001715231200000111101100000064240.500173047009260137563942013329447317635.29%17476.47%01113232447.89%1123237647.26%520103150.44%976894284823
3Buffalo Sabres2020000035-21010000001-11010000034-100.00036900030057142914052820358112.50%10190.00%01113232447.89%1123237647.26%520103150.44%513543132412
4Calgary Flames41200100914-51010000025-33110010079-230.3759172600243012443403831214220751218.33%8275.00%01113232447.89%1123237647.26%520103150.44%1047488275025
5Caroline Hurricanes31200000711-42020000039-61100000042220.333712190041208731263001052541798225.00%16756.25%01113232447.89%1123237647.26%520103150.44%654376223818
6Chicago Blackhawks30200100913-41010000046-22010010057-210.1679152400153068172922010138286810330.00%14657.14%01113232447.89%1123237647.26%520103150.44%654374234019
7Colorado Avalanche220000001183110000005411100000064241.000111829004610622321180881914356233.33%7185.71%01113232447.89%1123237647.26%520103150.44%432952142412
8Columbus Blue Jackets22000000422110000001011100000032141.0004812011120672220250471229331119.09%6183.33%01113232447.89%1123237647.26%520103150.44%503544162412
9Dallas Stars2020000036-31010000013-21010000023-100.00036910012048920190732237437114.29%9188.89%01113232447.89%1123237647.26%520103150.44%432851152512
10Detroit Red Wings32100000711-4110000003212110000049-540.667714210004305714241908023275211218.18%11281.82%01113232447.89%1123237647.26%520103150.44%674575223717
11Edmonton Oilers22000000853000000000002200000085341.000816240033207321232905419254112541.67%30100.00%01113232447.89%1123237647.26%520103150.44%523740132613
12Floride Panthers31200000610-41010000025-32110000045-120.333611170021309435253408731266712216.67%11372.73%01113232447.89%1123237647.26%520103150.44%735069213719
13Los Angeles Kings20101000550100010003211010000023-120.5005813002201732619271522125357228.57%10370.00%01113232447.89%1123237647.26%520103150.44%503545142412
14Minnesota Wild21001000752110000003211000100043141.000713200031215621131936518243811218.18%120100.00%01113232447.89%1123237647.26%520103150.44%452951162713
15Montreal Canadiens30300000610-41010000024-22020000046-200.00061117003120883324310863341491400.00%18477.78%01113232447.89%1123237647.26%520103150.44%724970233617
16Nashville Predators20200000011-111010000006-61010000005-500.00000000000060271815059131244600.00%6433.33%01113232447.89%1123237647.26%520103150.44%483345152613
17New Jersey Devils30300000513-81010000026-42020000037-400.00059140031107619282901013824756116.67%11463.64%01113232447.89%1123237647.26%520103150.44%613980233818
18New York Islanders21100000712-5110000005321010000029-720.50071421003220521720150811523394125.00%9277.78%01113232447.89%1123237647.26%520103150.44%432951132411
19Ottawa Senateurs311010009901010000014-32100100085340.66791726002151721919322833026789333.33%8187.50%01113232447.89%1123237647.26%520103150.44%714973203518
20Philadelphie Flyers30300000312-91010000012-120200000210-800.000369001020732327230922820638112.50%10190.00%01113232447.89%1123237647.26%520103150.44%654477203617
21Phoenix Coyotes2020000059-41010000013-21010000046-200.000591400212059182219058152745400.00%11463.64%01113232447.89%1123237647.26%520103150.44%463049132412
22Pittsburgh Penguins2110000059-4110000004131010000018-720.500591400131056152219087202043500.00%8362.50%01113232447.89%1123237647.26%520103150.44%463351142210
23San Jose Sharks2110000067-12110000067-10000000000020.50061117001320571520220691920599222.22%90100.00%11113232447.89%1123237647.26%520103150.44%483348142311
24St-Louis Blues2110000068-2110000006421010000004-420.500612180022206528271005821233911327.27%11372.73%01113232447.89%1123237647.26%520103150.44%503543142513
25Toronto Maple Leafs21000100770210001007700000000000030.75071219004300522415130521924477114.29%11372.73%01113232447.89%1123237647.26%520103150.44%584140132513
Total67233603410178239-613312180120089114-253411180221089125-36580.433178324502125958574191263763163116211260568714082435020.58%2706476.30%21113232447.89%1123237647.26%520103150.44%159110951608491840417
27Vancouver Canucks21000010835110000004041000001043141.0008132101412170301821461119419333.33%20100.00%11113232447.89%1123237647.26%520103150.44%543944142613
28Washington Capitals2020000049-52020000049-50000000000000.0004812000310511420170731326439222.22%13376.92%01113232447.89%1123237647.26%520103150.44%453048142512
29Winnipeg Jets210001007701000010045-11100000032130.7507121900223050141419362148526116.67%30100.00%01113232447.89%1123237647.26%520103150.44%463149172613
_Since Last GM Reset67233603410178239-613312180120089114-253411180221089125-36580.433178324502125958574191263763163116211260568714082435020.58%2706476.30%21113232447.89%1123237647.26%520103150.44%159110951608491840417
_Vs Conference3712230110090135-4519612001004664-1818611010004471-27270.365901672570133263011019336338343211593243917761292317.83%1593975.47%01113232447.89%1123237647.26%520103150.44%869597898269457224
_Vs Division17512000003568-33936000002030-10826000001538-23100.2943566101011311110462141163158058615118337551815.69%732171.23%01113232447.89%1123237647.26%520103150.44%377256429125212101

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
6758OTL217832450219122112605687140812
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
6723363410178239
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
331218120089114
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
341118221089125
Derniers 10 Matchs
WLOTWOTL SOWSOL
260200
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2435020.58%2706476.30%2
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
637631631165958574
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1113232447.89%1123237647.26%520103150.44%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
159110951608491840417


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2017-10-018Minnesota Wild2New York Rangers3WSommaire du Match
2 - 2017-10-0221New York Rangers2Montreal Canadiens3LSommaire du Match
3 - 2017-10-0331New York Rangers3Calgary Flames5LSommaire du Match
6 - 2017-10-0651Caroline Hurricanes6New York Rangers2LSommaire du Match
9 - 2017-10-0968Boston Bruins1New York Rangers3WSommaire du Match
11 - 2017-10-1185New York Rangers2Floride Panthers4LSommaire du Match
13 - 2017-10-1398Toronto Maple Leafs6New York Rangers5LXSommaire du Match
14 - 2017-10-14110New York Rangers1Pittsburgh Penguins8LSommaire du Match
16 - 2017-10-16122New York Rangers3Chicago Blackhawks4LSommaire du Match
18 - 2017-10-18140New York Rangers4Edmonton Oilers3WSommaire du Match
19 - 2017-10-19148Buffalo Sabres1New York Rangers0LSommaire du Match
20 - 2017-10-20160New York Rangers1Detroit Red Wings8LSommaire du Match
23 - 2017-10-23178Boston Bruins6New York Rangers5LSommaire du Match
25 - 2017-10-25196New York Rangers4Ottawa Senateurs2WSommaire du Match
26 - 2017-10-26205Columbus Blue Jackets0New York Rangers1WSommaire du Match
30 - 2017-10-30227Washington Capitals4New York Rangers2LSommaire du Match
31 - 2017-10-31235New York Rangers1New Jersey Devils3LSommaire du Match
33 - 2017-11-02252New York Rangers3Detroit Red Wings1WSommaire du Match
35 - 2017-11-04265New York Rangers4Ottawa Senateurs3WXSommaire du Match
36 - 2017-11-05270San Jose Sharks3New York Rangers4WSommaire du Match
38 - 2017-11-07296Boston Bruins4New York Rangers3LSommaire du Match
39 - 2017-11-08308New York Rangers2New York Islanders9LSommaire du Match
40 - 2017-11-09324Dallas Stars3New York Rangers1LSommaire du Match
44 - 2017-11-13339New York Rangers0Nashville Predators5LSommaire du Match
47 - 2017-11-16352Pittsburgh Penguins1New York Rangers4WSommaire du Match
49 - 2017-11-18368New York Rangers4Vancouver Canucks3WXXSommaire du Match
50 - 2017-11-19379New York Rangers3Calgary Flames2WSommaire du Match
52 - 2017-11-21389Nashville Predators6New York Rangers0LSommaire du Match
54 - 2017-11-23407New York Rangers3Winnipeg Jets2WSommaire du Match
57 - 2017-11-26416St-Louis Blues4New York Rangers6WSommaire du Match
59 - 2017-11-28435New York Rangers1Philadelphie Flyers7LSommaire du Match
61 - 2017-11-30445New York Rangers4Caroline Hurricanes2WSommaire du Match
62 - 2017-12-01450Toronto Maple Leafs1New York Rangers2WSommaire du Match
65 - 2017-12-04475Philadelphie Flyers2New York Rangers1LSommaire du Match
66 - 2017-12-05491New York Rangers2Los Angeles Kings3LSommaire du Match
67 - 2017-12-06505New York Rangers3Buffalo Sabres4LSommaire du Match
68 - 2017-12-07512Anaheim Ducks3New York Rangers4WSommaire du Match
72 - 2017-12-11534New York Rangers2Chicago Blackhawks3LXSommaire du Match
74 - 2017-12-13540Detroit Red Wings2New York Rangers3WSommaire du Match
76 - 2017-12-15562New York Rangers4Edmonton Oilers2WSommaire du Match
77 - 2017-12-16571Vancouver Canucks0New York Rangers4WSommaire du Match
79 - 2017-12-18594New York Islanders3New York Rangers5WSommaire du Match
80 - 2017-12-19603New York Rangers6Boston Bruins4WSommaire du Match
83 - 2017-12-22619New York Rangers2New Jersey Devils4LSommaire du Match
84 - 2017-12-23630Caroline Hurricanes3New York Rangers1LSommaire du Match
86 - 2017-12-25654Ottawa Senateurs4New York Rangers1LSommaire du Match
88 - 2017-12-27668New York Rangers4Phoenix Coyotes6LSommaire du Match
89 - 2017-12-28682Floride Panthers5New York Rangers2LSommaire du Match
90 - 2017-12-29692New York Rangers2Dallas Stars3LSommaire du Match
91 - 2017-12-30701New York Rangers0St-Louis Blues4LSommaire du Match
94 - 2018-01-02717New York Rangers4Minnesota Wild3WXSommaire du Match
95 - 2018-01-03720Colorado Avalanche4New York Rangers5WSommaire du Match
98 - 2018-01-06741New York Rangers2Montreal Canadiens3LSommaire du Match
99 - 2018-01-07753Calgary Flames5New York Rangers2LSommaire du Match
103 - 2018-01-11779Los Angeles Kings2New York Rangers3WXSommaire du Match
106 - 2018-01-14800New York Rangers3Columbus Blue Jackets2WSommaire du Match
109 - 2018-01-17808Phoenix Coyotes3New York Rangers1LSommaire du Match
114 - 2018-01-22834San Jose Sharks4New York Rangers2LSommaire du Match
116 - 2018-01-24856New York Rangers6Colorado Avalanche4WSommaire du Match
118 - 2018-01-26867Montreal Canadiens4New York Rangers2LSommaire du Match
121 - 2018-01-29881New York Rangers1Philadelphie Flyers3LSommaire du Match
122 - 2018-01-30896New York Rangers2Floride Panthers1WSommaire du Match
123 - 2018-01-31899Washington Capitals5New York Rangers2LSommaire du Match
125 - 2018-02-02925Chicago Blackhawks6New York Rangers4LSommaire du Match
127 - 2018-02-04946New Jersey Devils6New York Rangers2LSommaire du Match
129 - 2018-02-06963New York Rangers1Calgary Flames2LXSommaire du Match
131 - 2018-02-08980Winnipeg Jets5New York Rangers4LXSommaire du Match
134 - 2018-02-11996New York Rangers-Toronto Maple Leafs-
135 - 2018-02-121008New York Rangers-Pittsburgh Penguins-
136 - 2018-02-131016Tampa Bay Lightning-New York Rangers-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
139 - 2018-02-161033New York Rangers-Tampa Bay Lightning-
140 - 2018-02-171041New York Rangers-Anaheim Ducks-
141 - 2018-02-181051Tampa Bay Lightning-New York Rangers-
143 - 2018-02-201060New York Rangers-San Jose Sharks-
145 - 2018-02-221072New York Rangers-Columbus Blue Jackets-
146 - 2018-02-231078New York Rangers-Washington Capitals-
147 - 2018-02-241085Edmonton Oilers-New York Rangers-
151 - 2018-02-281110New York Islanders-New York Rangers-
154 - 2018-03-031139Buffalo Sabres-New York Rangers-
160 - 2018-03-091169Caroline Hurricanes-New York Rangers-
168 - 2018-03-171197Minnesota Wild-New York Rangers-
172 - 2018-03-211226Columbus Blue Jackets-New York Rangers-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2Niveau 3Niveau 4Luxe
Capacité de l'Aréna60005000200040001000
Prix des Billets100603520200
Assistance150,646124,86849,98699,53425,684
Attendance PCT76.08%75.68%75.74%75.40%77.83%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
8 13658 - 75.88% 857,282$28,290,302$18000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des CoachsValeur du Cap Salarial Spécial
32,661,008$ 43,740,000$ 38,550,000$ 0$ 0$
Cap Salarial Par JourCap salarial à ce jourTaxe de Luxe TotaleJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
43,740,000$ 30,341,939$ 0$ 25 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
6,858,255$ 42 270,173$ 11,347,266$

Total de l'Équipe Éstimé
Dépenses de la Saison ÉstiméesCap Salarial de la Saison ÉstiméCompte Bancaire ActuelCompte Bancaire Projeté
12,206,636$ 43,740,000$ 121,440,187$ 116,091,806$



Charte de Profondeur

Ailier GaucheCentreAilier Droit
Andrew ShawAGE:26PO:1OV:0
*Tom PyattAGE:29PO:1OV:0
*Timo MeierAGE:20PO:1OV:0
Colton HargroveAGE:24PO:1OV:0
Jarome IginlaAGE:39PO:1OV:0
Dylan LarkinAGE:20PO:1OV:0
Michael CammalleriAGE:34PO:1OV:0
Dwight KingAGE:27PO:1OV:0
Joel WardAGE:36PO:1OV:0
Nail YakupovAGE:23PO:1OV:0
Mitch CallahanAGE:25PO:1OV:0
Anze KopitarAGE:29PO:1OV:0
*Tom PyattAGE:29PO:1OV:0
*Timo MeierAGE:20PO:1OV:0
*Mark OlverAGE:29PO:1OV:0
Michael CammalleriAGE:34PO:1OV:0
Jonathan MarchessaultAGE:26PO:1OV:0
Joel WardAGE:36PO:1OV:0
Nail YakupovAGE:23PO:1OV:0
Mitch CallahanAGE:25PO:1OV:0
Cody BassAGE:30PO:1OV:0
Matt StajanAGE:33PO:1OV:0
Andrew ShawAGE:26PO:1OV:0
*Tom PyattAGE:29PO:1OV:0
*Timo MeierAGE:20PO:1OV:0
Jarome IginlaAGE:39PO:1OV:0
Jonathan MarchessaultAGE:26PO:1OV:0
Joel WardAGE:36PO:1OV:0
Nail YakupovAGE:23PO:1OV:0
Mitch CallahanAGE:25PO:1OV:0

Défense #1Défense #2Gardien
Adam PardyAGE:32PO:1OV:0
Kenney MorrisonAGE:24PO:1OV:0
Shea WeberAGE:31PO:1OV:0
Zach LeslieAGE:22PO:1OV:0
*Ivan ProvorovAGE:20PO:1OV:0
Oscar KlefbomAGE:23PO:1OV:0
Ryan MurrayAGE:23PO:1OV:0
Marc StaalAGE:30PO:1OV:0
Steve OleksyAGE:30PO:1OV:0
Vincent LoVerdeAGE:27PO:1OV:0
Slater KoekkoekAGE:22PO:1OV:0
Viktor LoovAGE:24PO:1OV:0
*Alex LyonAGE:24PO:1OV:0
Stephon WilliamsAGE:23PO:1OV:0
Brian ElliottAGE:31PO:1OV:0

Éspoirs

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Éspoir Nom de l'ÉquipeAnnée de Repêchage Choix Total Information Lien
Alexis PepinNew York Rangers10115
Anthony FlorentinoNew York Rangers9124
Christian JarosNew York Rangers1185
Frederik OlofssonNew York Rangers1080
Luke KuninNew York Rangers1212
Scott GreenhamNew York Rangers
Simon BourqueNew York Rangers11130
Vladimir BobylevNew York Rangers12131
William BorgenNew York Rangers11100

Choix au Repêchage

Année R1R2R3R4R5R6
13NYR NYR NYR NYR
14NYR NYR NYR Pit NYR NYR
15NYR NYR NYR NYR NYR
16NYR NYR NYR NYR NYR NYR
17NYR NYR NYR NYR NYR NYR



[2018-02-22 23:51:41] - TRADE : From Dallas Stars to New York Rangers : Tom Pyatt.
[2018-02-22 23:51:41] - TRADE : From New York Rangers to Dallas Stars : Y:13-RND:4-NYR.
[2018-01-26 19:19:13] - TRADE : From New York Rangers to Buffalo Sabres : Cam Ward, Roman Polak, Y:14-RND:3-Van.
[2018-01-26 19:19:13] - TRADE : From Buffalo Sabres to New York Rangers : Brian Elliott, Steve Oleksy, Y:13-RND:6-NYR.
[2018-01-26 19:19:12] - Steve Oleksy was added to New York Rangers.
[2018-01-26 19:19:12] - Brian Elliott was added to New York Rangers.
[2017-12-12 09:46:33] - TRADE : From Phoenix Coyotes to New York Rangers : Cody Bass, Mark Olver.
[2017-12-12 09:46:32] - Mark Olver was added to New York Rangers.
[2017-12-12 09:46:32] - Cody Bass was added to New York Rangers.
[2017-09-25 11:40:57] - TRADE : From New York Rangers to Dallas Stars : Nikita Tryamkin.
[2017-09-25 11:40:57] - TRADE : From Dallas Stars to New York Rangers : Alexis Pepin (P).
[2017-09-10 16:29:30] - New York Rangers hired Jack Capuano for 3 000 000 $ for 6 year(s).
[2017-09-09 17:38:19] - TRADE : From Pittsburgh Penguins to New York Rangers : Stephon Williams.
[2017-09-09 17:38:19] - TRADE : From New York Rangers to Pittsburgh Penguins : Y:15-RND:6-NYR.
[2017-09-09 17:38:18] - Stephon Williams was added to New York Rangers.



[2018-02-25 12:52:21] Ryan Murray from New York Rangers is back from Right Eye Injury.
[2018-02-23 10:19:59] Auto Lines Partial Function has been run for New York Rangers.
[2018-02-23 10:19:59] Auto Roster Partial Function has been run for New York Rangers.
[2018-02-22 23:51:41] TRADE : From Dallas Stars to New York Rangers : Tom Pyatt.
[2018-02-22 23:51:41] TRADE : From New York Rangers to Dallas Stars : Y:13-RND:4-NYR.
[2018-02-22 23:50:07] Alex Lyon from New York Rangers is back from Exhaustion.
[2018-02-21 10:11:28] Alex Lyon from New York Rangers injured (Exhaustion)
[2018-02-21 10:11:28] Game 946 - Ryan Murray from New York Rangers is injured (Right Eye) and is out for 1 week.
[2018-02-17 19:58:04] Brian Elliott from New York Rangers is back from Exhaustion.
[2018-02-17 19:57:12] Auto Lines Partial Function has been run for New York Rangers.
[2018-02-17 19:57:12] Auto Roster Partial Function has been run for New York Rangers.
[2018-02-16 12:39:46] Brian Elliott from New York Rangers injured (Exhaustion)
[2018-02-15 09:10:03] Steve Oleksy from New York Rangers is back from Left Foot Injury.
[2018-02-15 09:09:51] Game 881 - Steve Oleksy from New York Rangers is injured (Left Foot) and is out for 2 days.
[2018-02-08 14:28:25] Auto Lines Partial Function has been run for New York Rangers.
[2018-02-08 14:28:25] Auto Roster Partial Function has been run for New York Rangers.
[2018-02-03 14:06:02] Nail Yakupov from New York Rangers is back from Left Knee Injury.
[2018-02-03 14:05:56] Game 808 - Nail Yakupov from New York Rangers is injured (Left Knee) and is out for 3 days.
[2018-01-31 17:25:20] Shea Weber from New York Rangers is back from Torso Injury.
[2018-01-31 17:25:19] Game 800 - Shea Weber from New York Rangers is injured (Torso) and is out for 2 days.



Pas de Blessure ou de Suspension.


LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1267233603410178239-613312180120089114-253411180221089125-3658178324502125958574191263763163116211260568714082435020.58%2706476.30%21113232447.89%1123237647.26%520103150.44%159110951608491840417
Total Saison Régulière67233603410178239-613312180120089114-253411180221089125-3658178324502125958574191263763163116211260568714082435020.58%2706476.30%21113232447.89%1123237647.26%520103150.44%159110951608491840417