Bears

GP: 18 | W: 9 | L: 7 | OTL: 2 | P: 20
GF: 42 | GA: 37 | PP%: 18.18% | PK%: 83.93%
GM : Mathieu Girard | Morale : 48 | Team Overall : 61
Next Games #268 vs Phantoms
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Kyle CliffordX98.00955565759985727050646672557174153690
2Tanner GlassX98.00895559678179636350606064558476151640
3Jason DickinsonXX98.00635571707167676480626063555050153610
4Anton BlidhX100.00565565757871545650555660556573154590
5Alexander Volkov (R)X100.00735578727862695550555555557274151590
6Anthony CamaraX100.00755565637867595550555555557274151580
7Paul ThompsonX100.00845569626866606050606060555050150580
8Rich CluneX100.00565558627568685550555556555959153570
9Dennis Yan (R)X100.00565555555657575550555555557575151550
10Brett SutterX100.00565555555758585550555555557475151550
11Reid Duke (R)X100.00565555555555555550555555555050151530
12Anthony DeAngeloX100.00765585905880798025676072557575156710
13Klas DahlbeckX100.00845575738279697225636174557272153690
14Andrei Mironov (R)X100.00725561815769576625626265556462151630
15Trevor MurphyX100.00645570655875676525616164555353153610
16Sami Niku (R)X100.00615568755677556125606260556262151600
17Kyle Wood (R)X100.00595559615959795925595959557272153590
18Simon DespresX100.00555555605555555525555555557774151560
19Michael Kapla (R)X100.00555555605555695525555555555555133540
Scratches
TEAM AVERAGE99.6868556467676864614159586155666615160
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Juuse Saros100.0083788183888885848782557572143800
2Vitek Vanecek100.0064788474666670677070556867153680
Scratches
TEAM AVERAGE100.007478837977777876797655727014874
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bob Hartley61626269885656CAN5756,300,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Klas DahlbeckBears (Was)D1851722630048225522289.09%3536520.2857124672000173000.00%000001.2100000223
2Kyle CliffordBears (Was)LW18129212460695466315218.18%644224.5636920790004814156.20%25800020.9501000520
3Anthony DeAngeloBears (Was)D187613-2335573259203811.86%3242823.826284393000079100.00%000100.6100100020
4Jason DickinsonBears (Was)C/LW1838111805305114485.88%538321.3315612750001561060.59%23600000.5700000020
5Trevor MurphyBears (Was)D182810230034202072010.00%2529416.35022830000126100.00%000000.6800000000
6Kyle WoodBears (Was)D183710612018112031515.00%1528615.893251648000041100.00%000000.7000000010
7Anton BlidhBears (Was)LW18279-143552406321413.17%133318.5406615600000170060.00%1500000.5400001001
8Rich CluneBears (Was)LW18246500391381515.38%318110.08101270000390140.91%2200000.6601000101
9Paul ThompsonBears (Was)RW182243215159234198.70%01799.97011521000000035.71%1400000.4500010000
10Tanner GlassBears (Was)LW612308024121710115.88%014624.370113200000240053.33%3000000.4100000100
11Andrei MironovBears (Was)D6112-2401210115109.09%412020.15101824000025100.00%000000.3300000001
12Brett SutterBears (Was)C61011001743325.00%110417.39000020000020053.68%9500000.1900000000
13Anthony CamaraBears (Was)LW6000000075010.00%06110.20000020000200041.18%3400000.0000000000
14Alexander VolkovBears (Was)RW6000-120104120.00%07813.1300022500000000.00%000000.0000000000
15Dennis YanBears (Was)LW6000120201000.00%1142.4800014000000066.67%300000.0000000000
16Reid DukeBears (Was)C6000-260172000.00%06911.5900000000000051.85%5400000.0000000000
17Sami NikuBears (Was)D6000175721310.00%06310.590000100000000.00%000000.0000000000
18Michael KaplaBears (Was)D6000-100400000.00%3335.540000000000000.00%000000.0000000000
19Simon DespresBears (Was)D6000-260410000.00%0386.380000100003000.00%000000.0000000000
Team Total or Average222417111217258203572734151523049.88%131362516.3320325218159200074919255.45%76100120.6202111996
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Juuse SarosBears (Was)189720.9082.07104442363910300.6673180103
2Vitek VanecekBears (Was)20001.0000.0042000150000.0000018000
Team Total or Average209720.9111.99108742364060300.66731818103


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Alexander VolkovBears (Was)RW191997-08-02Yes192 Lbs6 ft1NoNoNo4ELCPro & Farm500,000$0$0$No500,000$500,000$500,000$
Andrei MironovBears (Was)D221994-07-29Yes198 Lbs6 ft2NoNoNo4ELCPro & Farm300,000$0$0$No300,000$300,000$300,000$
Anthony CamaraBears (Was)LW231993-09-03No192 Lbs6 ft0NoNoNo1RFAPro & Farm300,000$0$0$No
Anthony DeAngeloBears (Was)D211995-10-24No175 Lbs5 ft11NoNoNo2ELCPro & Farm900,000$0$0$No900,000$
Anton BlidhBears (Was)LW211995-03-14No201 Lbs6 ft0NoNoNo2ELCPro & Farm300,000$0$0$No300,000$
Brett SutterBears (Was)C291987-06-01No201 Lbs6 ft0NoNoNo3UFAPro & Farm300,000$0$0$No300,000$300,000$
Dennis YanBears (Was)LW191997-04-14Yes183 Lbs6 ft1NoNoNo4ELCPro & Farm500,000$0$0$No500,000$500,000$500,000$
Jason DickinsonBears (Was)C/LW211995-07-04No185 Lbs6 ft1NoNoNo2ELCPro & Farm900,000$0$0$No900,000$
Juuse SarosBears (Was)G211995-04-19No180 Lbs5 ft11NoNoNo2ELCPro & Farm500,000$0$0$No500,000$
Klas DahlbeckBears (Was)D251991-07-06No207 Lbs6 ft3NoNoNo1RFAPro & Farm300,000$0$0$No
Kyle CliffordBears (Was)LW261991-01-13No211 Lbs6 ft2NoNoNo2RFAPro & Farm300,000$0$0$No300,000$
Kyle WoodBears (Was)D201996-05-04Yes210 Lbs6 ft5NoNoNo3ELCPro & Farm500,000$0$0$No500,000$500,000$
Michael KaplaBears (Was)D221994-09-19Yes201 Lbs6 ft0NoNoNo4ELCPro & Farm300,000$0$0$No300,000$300,000$300,000$
Paul ThompsonBears (Was)RW281988-11-29No198 Lbs5 ft11NoNoNo1UFAPro & Farm300,000$0$0$No
Reid DukeBears (Was)C201996-01-28Yes192 Lbs6 ft0NoNoNo4ELCPro & Farm300,000$0$0$No300,000$300,000$300,000$
Rich CluneBears (Was)LW291987-04-24No207 Lbs5 ft10NoNoNo1UFAPro & Farm300,000$0$0$No
Sami NikuBears (Was)D201996-10-10Yes179 Lbs6 ft0NoNoNo4ELCPro & Farm300,000$0$0$No300,000$300,000$300,000$
Simon DespresBears (Was)D251991-07-26No214 Lbs6 ft4NoNoNo3RFAPro & Farm300,000$0$0$No300,000$300,000$
Tanner GlassBears (Was)LW331983-11-28No210 Lbs6 ft1NoNoNo2UFAPro & Farm300,000$0$0$No300,000$
Trevor MurphyBears (Was)D211995-07-16No172 Lbs5 ft10NoNoNo2ELCPro & Farm300,000$0$0$No300,000$
Vitek VanecekBears (Was)G211996-01-09No180 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$0$0$No500,000$500,000$
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2123.14195 Lbs6 ft12.57404,762$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Kyle CliffordJason DickinsonAlexander Volkov40122
2Tanner GlassBrett SutterPaul Thompson30122
3Anton BlidhReid DukeKyle Clifford20122
4Anthony CamaraTanner GlassJason Dickinson10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Anthony DeAngeloKlas Dahlbeck40122
2Andrei MironovTrevor Murphy30122
3Sami NikuKyle Wood20122
4Simon DespresMichael Kapla10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Kyle CliffordJason DickinsonAlexander Volkov60122
2Tanner GlassBrett SutterPaul Thompson40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Anthony DeAngeloKlas Dahlbeck60122
2Andrei MironovTrevor Murphy40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Kyle CliffordTanner Glass60122
2Jason DickinsonAnton Blidh40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Anthony DeAngeloKlas Dahlbeck60122
2Andrei MironovTrevor Murphy40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Kyle Clifford60122Anthony DeAngeloKlas Dahlbeck60122
2Tanner Glass40122Andrei MironovTrevor Murphy40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Kyle CliffordTanner Glass60122
2Jason DickinsonAnton Blidh40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Anthony DeAngeloKlas Dahlbeck60122
2Andrei MironovTrevor Murphy40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Kyle CliffordJason DickinsonAlexander VolkovAnthony DeAngeloKlas Dahlbeck
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Kyle CliffordJason DickinsonAlexander VolkovAnthony DeAngeloKlas Dahlbeck
Extra Forwards
Normal PowerPlayPenalty Kill
Rich Clune, Dennis Yan, Anthony CamaraRich Clune, Dennis YanAnthony Camara
Extra Defensemen
Normal PowerPlayPenalty Kill
Sami Niku, Kyle Wood, Simon DespresSami NikuKyle Wood, Simon Despres
Penalty Shots
Kyle Clifford, Tanner Glass, Jason Dickinson, Anton Blidh, Alexander Volkov
Goalie
#1 : Juuse Saros, #2 : Vitek Vanecek


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000023-1000000000001010000023-100.00023500131910013147154136823316235240.00%8187.50%023754443.57%21256837.32%12525050.00%453322426126208105
2Americans2110000034-11010000003-31100000031220.500358001319100411471541368481740351317.69%19478.95%023754443.57%21256837.32%12525050.00%453322426126208105
3Checkers220000001221000000000000220000001221041.000122335011319100791471541368491820618225.00%100100.00%023754443.57%21256837.32%12525050.00%453322426126208105
4Crunch2010010047-31010000024-21000010023-110.25048120013191005814715413683015204116318.75%9366.67%023754443.57%21256837.32%12525050.00%453322426126208105
5Griffins11000000312000000000001100000031221.0003690013191003514715413682148187228.57%4175.00%023754443.57%21256837.32%12525050.00%453322426126208105
6IceHogs11000000202000000000001100000020221.00024601131910025147154136822610126233.33%50100.00%023754443.57%21256837.32%12525050.00%453322426126208105
7Monsters2020000006-62020000006-60000000000000.00000000131910035147154136842163135900.00%14471.43%023754443.57%21256837.32%12525050.00%453322426126208105
8Penguins3120000037-4110000002112020000016-520.333358001319100631471541368792455542827.14%18288.89%023754443.57%21256837.32%12525050.00%453322426126208105
9Phantoms1000000123-11000000123-10000000000010.50023500131910029147154136826131626400.00%5180.00%023754443.57%21256837.32%12525050.00%453322426126208105
10Sound Tigers11000000321110000003210000000000021.000358001319100151471541368301014187228.57%6183.33%023754443.57%21256837.32%12525050.00%453322426126208105
11Thunderbirds11000000514110000005140000000000021.0005101500131910029147154136815514215240.00%60100.00%023754443.57%21256837.32%12525050.00%453322426126208105
Total18970010142375944000011721-49530010025169200.556427711902131910044214715413684061382623651102018.18%1121883.93%023754443.57%21256837.32%12525050.00%453322426126208105
13Wolf Pack11000000312110000003120000000000021.000358001319100201471541368217182122100.00%8187.50%023754443.57%21256837.32%12525050.00%453322426126208105
_Since Last GM Reset18970010142375944000011721-49530010025169200.556427711902131910044214715413684061382623651102018.18%1121883.93%023754443.57%21256837.32%12525050.00%453322426126208105
_Vs Conference1035001011526-11733000011217-53020010039-680.40015264100131910022014715413682288515419566913.64%601280.00%023754443.57%21256837.32%12525050.00%453322426126208105
_Vs Division10130010023212611000001013-340200100138530.15023416401131910024114715413682478815421558813.79%61985.25%023754443.57%21256837.32%12525050.00%453322426126208105

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1820L2427711944240613826236502
All Games
GPWLOTWOTL SOWSOLGFGA
189701014237
Home Games
GPWLOTWOTL SOWSOLGFGA
94400011721
Visitor Games
GPWLOTWOTL SOWSOLGFGA
95301002516
Last 10 Games
WLOTWOTL SOWSOL
440101
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1102018.18%1121883.93%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
14715413681319100
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
23754443.57%21256837.32%12525050.00%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
453322426126208105


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
4 - 2018-09-0811Crunch4Bears2LBoxScore
5 - 2018-09-0926Sound Tigers2Bears3WBoxScore
10 - 2018-09-1434Bears3Griffins1WBoxScore
11 - 2018-09-1548Bears2Admirals3LBoxScore
12 - 2018-09-1662Bears2IceHogs0WBoxScore
15 - 2018-09-1966Bears0Penguins2LBoxScore
17 - 2018-09-2170Bears6Checkers2WBoxScore
18 - 2018-09-2284Bears6Checkers0WBoxScore
24 - 2018-09-28109Bears1Penguins4LBoxScore
25 - 2018-09-29118Penguins1Bears2WBoxScore
26 - 2018-09-30134Phantoms3Bears2LXXBoxScore
31 - 2018-10-05145Bears3Americans1WBoxScore
32 - 2018-10-06156Americans3Bears0LBoxScore
33 - 2018-10-07168Wolf Pack1Bears3WBoxScore
39 - 2018-10-13195Thunderbirds1Bears5WBoxScore
40 - 2018-10-14209Bears2Crunch3LXBoxScore
45 - 2018-10-19223Monsters4Bears0LBoxScore
46 - 2018-10-20238Monsters2Bears0LBoxScore
52 - 2018-10-26268Bears-Phantoms-
53 - 2018-10-27282Bears-Penguins-
57 - 2018-10-31300Penguins-Bears-
60 - 2018-11-03323Thunderbirds-Bears-
61 - 2018-11-04335Devils-Bears-
66 - 2018-11-09352Bears-Phantoms-
67 - 2018-11-10364Wolf Pack-Bears-
68 - 2018-11-11379Penguins-Bears-
74 - 2018-11-17408Bears-Bruins-
75 - 2018-11-18417Bears-Thunderbirds-
78 - 2018-11-21427Bears-Phantoms-
80 - 2018-11-23434Penguins-Bears-
81 - 2018-11-24456Phantoms-Bears-
87 - 2018-11-30479Bears-Penguins-
88 - 2018-12-01488Bruins-Bears-
89 - 2018-12-02501Bruins-Bears-
95 - 2018-12-08536Griffins-Bears-
96 - 2018-12-09549Admirals-Bears-
101 - 2018-12-14566Bears-Thunderbirds-
102 - 2018-12-15580Bears-Phantoms-
103 - 2018-12-16590Phantoms-Bears-
106 - 2018-12-19598Bears-Devils-
109 - 2018-12-22624Bears-Penguins-
110 - 2018-12-23632Bears-Sound Tigers-
113 - 2018-12-26649Bears-Phantoms-
116 - 2018-12-29672Rocket-Bears-
123 - 2019-01-05700Phantoms-Bears-
124 - 2019-01-06711Senators-Bears-
127 - 2019-01-09718Bears-Thunderbirds-
130 - 2019-01-12737Checkers-Bears-
131 - 2019-01-13755Checkers-Bears-
134 - 2019-01-16762Penguins-Bears-
137 - 2019-01-19781Phantoms-Bears-
138 - 2019-01-20801Bears-Phantoms-
Trade Deadline --- Trades can’t be done after this day is simulated!
143 - 2019-01-25822Bears-Penguins-
144 - 2019-01-26833IceHogs-Bears-
145 - 2019-01-27840Bears-Sound Tigers-
148 - 2019-01-30851Bears-Wolf Pack-
150 - 2019-02-01857Bears-Comets-
151 - 2019-02-02870Sound Tigers-Bears-
157 - 2019-02-08901Bears-Bruins-
158 - 2019-02-09912Bears-Bruins-
159 - 2019-02-10923Bears-Wolf Pack-
162 - 2019-02-13935Thunderbirds-Bears-
164 - 2019-02-15945Marlies-Bears-
165 - 2019-02-16956Sound Tigers-Bears-
168 - 2019-02-19972Penguins-Bears-
172 - 2019-02-23996Bears-Monsters-
173 - 2019-02-241009Bears-Monsters-
179 - 2019-03-021040Bruins-Bears-
180 - 2019-03-031054Bears-Sound Tigers-
184 - 2019-03-071072Bears-Marlies-
185 - 2019-03-081073Bears-Senators-
186 - 2019-03-091083Bears-Rocket-
189 - 2019-03-121105Phantoms-Bears-
192 - 2019-03-151122Bears-Wolf Pack-
193 - 2019-03-161129Comets-Bears-
194 - 2019-03-171146Wolf Pack-Bears-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
29 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,513,487$ 85,000$ 60,440$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 19,683$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 148 32,912$ 4,870,976$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1318970010142375944000011721-4953001002516920427711902131910044214715413684061382623651102018.18%1121883.93%023754443.57%21256837.32%12525050.00%453322426126208105
Total Regular Season18970010142375944000011721-4953001002516920427711902131910044214715413684061382623651102018.18%1121883.93%023754443.57%21256837.32%12525050.00%453322426126208105
Playoff
1240400000313-102020000035-22020000008-803580012004915132101112956852129.52%27485.19%0478952.81%6915245.39%325162.75%8860107304723
1240400000313-102020000035-22020000008-803580012004915132101112956852129.52%27485.19%0478952.81%6915245.39%325162.75%8860107304723
Total Playoff80800000626-2040400000610-440400000016-16061016002400983026420222581121704249.52%54885.19%09417852.81%13830445.39%6410262.75%177120214619446