Stars

GP: 4 | W: 2 | L: 2 | OTL: 0 | P: 4
GF: 7 | GA: 11 | PP%: 9.38% | PK%: 85.19%
DG: Pierre-Olivier Lefrançois | Morale : 51 | Moyenne d'Équipe : N/A
Prochain matchs #65 vs Griffins
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Daniel ZaarX100.0060557166626269605060615655737515200
2Chris BrownX100.0056555555575858555055555555737315200
3Nick LappinX100.0062556576666266605060606055505015200
4Brett Pollock (R)X100.0056555555575858555055555555737215200
5Max GortzX100.0056555555555555555055555555505014900
6Vernon FiddlerX100.0055555555555555555055555555737414900
7Roope HintzX100.0056555555555555555055555555505015200
8Levko Koper (R)X100.0056555555555655555055555555505015200
9Hunter Fejes (R)X100.0059557163766854555055555955505015200
10Chris BreenX100.0055555560555560552555555555535314900
11Dakota MermisX100.0057555560555567552555555555535315200
12Michal RozsivalX100.0058555560555577552555555555879315200
13Nick SchultzX100.0062556570856579652565665955909215200
14Nikita TryamkinX100.0055555560555555552555555555727215200
15Julian MelchioriX100.0055555560555579552555555555717015200
16David SchlemkoX100.0074559572828381752565617555837915200
17Colby RobakX100.0060556466796571602560605855535315200
18Joe HickettsX100.0065556681577470652565606355535315300
19Timothy Liljegren (R)X100.0055555560555558552555555555626215200
20Philippe Myers (R)X100.0055555560555555552555555555626215200
Rayé
1Drew ShoreX100.0056555555565757555055555555677414800
2Brandon Gignac (R)X100.0056555555575859555055555555736614800
3Nicholas Merkley (R)X100.0055555555555555555055555555505014600
4Zack MacEwen (R)X100.0055555555555555555055555555505014600
5Matt FrattinX100.0056555555555555555055555555596014600
6Stephen GiontaX100.0055555555555555555055555555737214600
7Ryan JohnstonX100.0055555560555559552555555555535314600
8Mathieu BrodeurX100.0055555560555568552555555555535314600
MOYENNE D'ÉQUIPE100.005855596160596257385756575563631500
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Garret Sparks100.007775778577778383767655706914600
2Spencer Martin100.006376817965656764686555606315200
Rayé
1Jack Flinn100.005465598759595858595955545614600
MOYENNE D'ÉQUIPE100.00657272846767696868675561631480
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Clark Donatelli65878781735870USA505100,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Nick LappinStars (Dal)RW4044-14087112110.00%19223.230332220001140051.61%3100000.8600000000
2Timothy LiljegrenStars (Dal)D41340203333233.33%58120.45123320000020000.00%000000.9800000100
3Daniel ZaarStars (Dal)RW41121204383312.50%09423.640002200001181033.33%600000.4200000001
4Joe HickettsStars (Dal)D4022-1115967460.00%59323.40000623000020000.00%000000.4300001000
5Chris BreenStars (Dal)D2011100020000.00%1147.4700002000020042.86%700001.3400000000
6Dakota MermisStars (Dal)D41010405482412.50%58220.56101420000020000.00%000000.2400000000
7Chris BrownStars (Dal)C4011-140422000.00%15714.43000213000050053.33%1500000.3500000000
8Drew ShoreStars (Dal)C21011002421250.00%03216.2500000000050043.48%2300000.6200000010
9Vernon FiddlerStars (Dal)C2101-1601331333.33%03819.46101111000000045.65%4600000.5100000000
10Roope HintzStars (Dal)LW410124011450320.00%05513.9300015000051075.00%400000.3600000010
11Hunter FejesStars (Dal)LW4101-5603544225.00%08521.480000230000120040.00%500000.2300000000
12Colby RobakStars (Dal)D4011-120747140.00%29323.27000522000020000.00%000000.2100000000
13Michal RozsivalStars (Dal)D4000020200000.00%0102.670000400002000.00%200000.0000000000
14Brett PollockStars (Dal)C4000000493120.00%28922.280001200000200045.45%12100000.0000000000
15Max GortzStars (Dal)RW2000-100110210.00%02211.48000030000000100.00%200000.0000000000
16Nick SchultzStars (Dal)D4000000010000.00%020.57000010000000100.00%100000.0000000000
17Brandon GignacStars (Dal)C2000-300112100.00%13316.63000112000000054.55%3300000.0000000000
18Nikita TryamkinStars (Dal)D4000-3100551100.00%26015.130000600000000.00%000000.0000000000
19Julian MelchioriStars (Dal)D4000000000000.00%000.150000000000000.00%000000.0000000000
20Levko KoperStars (Dal)LW4000000020000.00%171.880000000003000.00%000000.0000000000
21David SchlemkoStars (Dal)D4000000000000.00%000.150000000000000.00%000000.0000000000
22Logan ShawDallas StarsC/RW2000-1201474470.00%03718.92000113000000066.67%300000.0000000000
23Philippe MyersStars (Dal)D4000-340611000.00%15814.730000000005000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne8071320-1663590747130509.86%27114814.353582924800021802047.83%29900000.3500001121
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Garret SparksStars (Dal)42200.8952.62206019860100.000040100
2Spencer MartinStars (Dal)10000.8573.6433002140000.000004000
Stats d'équipe Total ou en Moyenne52200.8902.7524001111000100.000044100


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Brandon GignacStars (Dal)C191997-11-07Yes172 Lbs5 ft11NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Brett PollockStars (Dal)C201996-03-17Yes194 Lbs6 ft3NoNoNo4Contrat d'EntréePro & Farm500,000$0$0$No500,000$500,000$500,000$
Chris BreenStars (Dal)D271989-06-29No224 Lbs6 ft7NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Chris BrownStars (Dal)C251991-02-03No215 Lbs6 ft2NoNoNo3Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$
Colby RobakStars (Dal)D261990-04-24No194 Lbs6 ft3NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Dakota MermisStars (Dal)D231994-01-05No196 Lbs6 ft0NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Daniel ZaarStars (Dal)RW221994-04-24No167 Lbs5 ft11NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
David SchlemkoStars (Dal)D291987-05-07No190 Lbs5 ft11NoNoNo3Sans RestrictionPro & Farm1,000,000$0$0$No1,000,000$1,000,000$
Drew ShoreStars (Dal)C251991-01-29No205 Lbs6 ft3NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Garret SparksStars (Dal)G231993-06-28No200 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm500,000$0$0$No500,000$
Hunter FejesStars (Dal)LW221994-05-31Yes190 Lbs6 ft1NoNoNo3Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$
Jack FlinnStars (Dal)G211995-12-20No223 Lbs6 ft8NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Joe HickettsStars (Dal)D201996-05-04No175 Lbs5 ft8NoNoNo3Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$
Julian MelchioriStars (Dal)D251991-12-06No214 Lbs6 ft5NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Levko KoperStars (Dal)LW261990-10-05Yes190 Lbs6 ft1NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Mathieu BrodeurStars (Dal)D261990-06-20No215 Lbs6 ft6NoNoNo4Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$300,000$
Matt FrattinStars (Dal)RW291988-01-02No205 Lbs6 ft0NoNoNo1Sans RestrictionPro & Farm500,000$0$0$No
Max GortzStars (Dal)RW231993-01-28No196 Lbs6 ft3NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Michal RozsivalStars (Dal)D381978-09-02No210 Lbs6 ft1NoNoNo2Sans RestrictionPro & Farm800,000$0$0$No800,000$
Nicholas MerkleyStars (Dal)C191997-05-23Yes194 Lbs5 ft10NoNoNo4Contrat d'EntréePro & Farm900,000$0$0$No900,000$900,000$900,000$
Nick LappinStars (Dal)RW241992-11-01No174 Lbs6 ft1NoNoNo3Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$
Nick SchultzStars (Dal)D341982-08-24No203 Lbs6 ft1NoNoNo3Sans RestrictionPro & Farm1,000,000$0$0$No1,000,000$1,000,000$
Nikita TryamkinStars (Dal)D261990-03-04No240 Lbs6 ft8NoNoNo2Avec RestrictionPro & Farm500,000$0$0$No500,000$
Philippe MyersStars (Dal)D191997-01-25Yes209 Lbs6 ft5NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Roope HintzStars (Dal)LW201996-11-16No198 Lbs6 ft3NoNoNo4Contrat d'EntréePro & Farm500,000$0$0$No500,000$500,000$500,000$
Ryan JohnstonStars (Dal)D241992-02-14No176 Lbs5 ft10NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Spencer MartinStars (Dal)G211995-06-07No200 Lbs6 ft3NoNoNo1Contrat d'EntréePro & Farm894,000$0$0$No
Stephen GiontaStars (Dal)C331983-10-08No185 Lbs5 ft7NoNoNo2Sans RestrictionPro & Farm300,000$0$0$No300,000$
Timothy LiljegrenStars (Dal)D171999-04-30Yes190 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm0$0$No
Vernon FiddlerStars (Dal)C361980-05-08No205 Lbs5 ft11NoNoNo1Sans RestrictionPro & Farm500,000$0$0$No
Zack MacEwenStars (Dal)C201996-07-08Yes205 Lbs6 ft3NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
3124.58199 Lbs6 ft22.58428,839$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Chris BrownBrett PollockDaniel Zaar40122
2Hunter FejesVernon FiddlerNick Lappin30122
3Roope HintzNick LappinDaniel Zaar20122
4Nick LappinChris BrownDaniel Zaar10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Joe HickettsColby Robak40122
2Timothy LiljegrenDakota Mermis30122
3Nikita TryamkinPhilippe Myers20122
4Joe HickettsColby Robak10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Chris BrownBrett PollockDaniel Zaar60122
2Hunter FejesVernon FiddlerNick Lappin40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Joe HickettsColby Robak60122
2Timothy LiljegrenDakota Mermis40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Brett PollockDaniel Zaar60122
2Nick LappinHunter Fejes40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Joe HickettsColby Robak60122
2Timothy LiljegrenDakota Mermis40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Nick Lappin60122Joe HickettsColby Robak60122
2Daniel Zaar40122Timothy LiljegrenDakota Mermis40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Brett PollockDaniel Zaar60122
2Nick LappinHunter Fejes40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Joe HickettsColby Robak60122
2Timothy LiljegrenDakota Mermis40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Nick LappinBrett PollockDaniel ZaarJoe HickettsColby Robak
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Nick LappinBrett PollockDaniel ZaarJoe HickettsColby Robak
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Daniel Zaar, Nick Lappin, Brett PollockDaniel Zaar, Hunter FejesDaniel Zaar
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Nikita Tryamkin, Philippe Myers, Timothy LiljegrenNikita TryamkinPhilippe Myers, Timothy Liljegren
Tirs de Pénalité
Chris Brown, Daniel Zaar, Nick Lappin, Hunter Fejes, Brett Pollock
Gardien
#1 : Garret Sparks, #2 : Spencer Martin


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000006-61010000006-60000000000000.00000000321111292021126816341000.00%7185.71%05011045.45%6313148.09%305752.63%956395314925
2Griffins11000000303110000003030000000000021.00036901321120292021118314257114.29%70100.00%05011045.45%6313148.09%305752.63%956395314925
3IceHogs10001000321000000000001000100032121.0003580032112129202112878209222.22%4175.00%05011045.45%6313148.09%305752.63%956395314925
Total41201000711-42110000036-32010100045-140.500713200132117129202111002763903239.38%27485.19%05011045.45%6313148.09%305752.63%956395314925
5Wild1010000013-2000000000001010000013-200.0001230032111929202112892511600.00%9277.78%05011045.45%6313148.09%305752.63%956395314925
_Since Last GM Reset41201000711-42110000036-32010100045-140.500713200132117129202111002763903239.38%27485.19%05011045.45%6313148.09%305752.63%956395314925
_Vs Conference41201000711-42110000036-32010100045-140.500713200132117129202111002763903239.38%27485.19%05011045.45%6313148.09%305752.63%956395314925

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
44OTW1713207110027639001
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
4121000711
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
211000036
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
201100045
Derniers 10 Matchs
WLOTWOTL SOWSOL
121000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
3239.38%27485.19%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
29202113211
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
5011045.45%6313148.09%305752.63%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
956395314925


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2018-09-075Griffins0Stars3WSommaire du Match
4 - 2018-09-0819Admirals6Stars0LSommaire du Match
10 - 2018-09-1439Stars1Wild3LSommaire du Match
11 - 2018-09-1550Stars3IceHogs2WXSommaire du Match
15 - 2018-09-1965Stars-Griffins-
17 - 2018-09-2178Wild-Stars-
18 - 2018-09-2291Wild-Stars-
24 - 2018-09-28113Wolves-Stars-
25 - 2018-09-29127Barracuda-Stars-
31 - 2018-10-05151Stars-Reign-
32 - 2018-10-06166Stars-Condors-
39 - 2018-10-13201Rampage-Stars-
40 - 2018-10-14208Stars-Rampage-
43 - 2018-10-17220Moose-Stars-
45 - 2018-10-19231IceHogs-Stars-
52 - 2018-10-26273Stars-Rampage-
53 - 2018-10-27287Rampage-Stars-
54 - 2018-10-28295Stars-Rampage-
59 - 2018-11-02314Stars-Admirals-
60 - 2018-11-03325Stars-Griffins-
61 - 2018-11-04336Stars-Wolves-
64 - 2018-11-07345Admirals-Stars-
66 - 2018-11-09357Admirals-Stars-
71 - 2018-11-14388Wild-Stars-
73 - 2018-11-16398Stars-Admirals-
74 - 2018-11-17407Stars-IceHogs-
77 - 2018-11-20422Stars-Wolves-
80 - 2018-11-23444Rampage-Stars-
81 - 2018-11-24460Stars-Rampage-
86 - 2018-11-29474Rampage-Stars-
88 - 2018-12-01496Reign-Stars-
89 - 2018-12-02502Stars-Rampage-
94 - 2018-12-07526Moose-Stars-
95 - 2018-12-08541Moose-Stars-
99 - 2018-12-12557Condors-Stars-
101 - 2018-12-14569IceHogs-Stars-
102 - 2018-12-15583Wild-Stars-
106 - 2018-12-19604Stars-Gulls-
108 - 2018-12-21614Stars-Barracuda-
109 - 2018-12-22628Stars-Heat-
111 - 2018-12-24642Stars-Roadrunners-
113 - 2018-12-26651Stars-Roadrunners-
115 - 2018-12-28664Heat-Stars-
116 - 2018-12-29680Gulls-Stars-
121 - 2019-01-03682Griffins-Stars-
127 - 2019-01-09721Stars-Admirals-
130 - 2019-01-12742Stars-Moose-
131 - 2019-01-13750Stars-Moose-
133 - 2019-01-15759Stars-IceHogs-
136 - 2019-01-18777Roadrunners-Stars-
137 - 2019-01-19790Roadrunners-Stars-
140 - 2019-01-22807Stars-Wild-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
142 - 2019-01-24814Stars-Wolves-
143 - 2019-01-25820Stars-Griffins-
145 - 2019-01-27844Stars-Wolves-
148 - 2019-01-30853Admirals-Stars-
150 - 2019-02-01863Wolves-Stars-
151 - 2019-02-02877Wolves-Stars-
154 - 2019-02-05889Stars-Admirals-
155 - 2019-02-06891Stars-Griffins-
158 - 2019-02-09919Stars-Rampage-
159 - 2019-02-10929Rampage-Stars-
162 - 2019-02-13940Stars-Moose-
164 - 2019-02-15951Stars-Moose-
166 - 2019-02-17970Stars-IceHogs-
169 - 2019-02-20982Griffins-Stars-
171 - 2019-02-22990Wolves-Stars-
172 - 2019-02-231004Griffins-Stars-
176 - 2019-02-271024Moose-Stars-
178 - 2019-03-011034Stars-Wild-
179 - 2019-03-021046Stars-Wild-
185 - 2019-03-081080IceHogs-Stars-
186 - 2019-03-091094IceHogs-Stars-
190 - 2019-03-131110Rampage-Stars-
192 - 2019-03-151124Stars-Rampage-
193 - 2019-03-161138Rampage-Stars-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
36 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
16,904$ 132,940$ 109,286$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 9,686$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 180 1,201$ 216,180$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1341201000711-42110000036-32010100045-14713200132117129202111002763903239.38%27485.19%05011045.45%6313148.09%305752.63%956395314925
Total Saison Régulière41201000711-42110000036-32010100045-14713200132117129202111002763903239.38%27485.19%05011045.45%6313148.09%305752.63%956395314925
Séries
12201280000053467116500000292729630000024195245399152001420154513132177154504661482814381501812.00%1211290.08%033464351.94%33666150.83%17030855.19%536367499169274142
12201280000053467116500000292729630000024195245399152001420154513132177154504661482814381501812.00%1211290.08%033464351.94%33666150.83%17030855.19%536367499169274142
Total Séries402416000001069214221210000005854418126000004838104810619830400284030810262643543081009322965628763003612.00%2422490.08%0668128651.94%672132250.83%34061655.19%1073735998339549284