IceHogs

GP: 4 | W: 0 | L: 3 | OTL: 1 | P: 1
GF: 2 | GA: 11 | PP%: 5.00% | PK%: 69.57%
DG: Joanick Boilard | Morale : 45 | Moyenne d'Équipe : N/A
Prochain matchs #81 vs Roadrunners
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Matthew Highmore (R)X100.0066558170667182645060636155505014600
2Brody SutterX100.0056555555575858555055555555747414600
3Darren KramerX100.0058555862797466555055555755736614600
4Sergey TolchinskyX100.0057556663595969555055555755505014600
5Thomas Di Pauli (R)X100.0060556963686354555055555755505014600
6Keith Aulie (R)X100.0055555560555558552555555555636314600
7Josh Jacobs (R)X100.0055555560555566552555555555535314600
8Noah Juulsen (R)X100.0081559281567855682561618055706714600
9Ryan Collins (R)X100.0055555560555555552555555555555514600
10Viktor SvedbergX100.0059555961595974592559595955535314600
11Stu BickelX100.0055555560555558552555555555565714600
Rayé
1Matt MartinX100.0099555977988574696468657055827414600
MOYENNE D'ÉQUIPE100.006355636464646458395757605561591460
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jean-Francois Berube100.005866566766666057616955606214600
2Justin Peters100.005781837860606363676155767114100
Rayé
MOYENNE D'ÉQUIPE100.00587470736363626064655568671440
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Brent Thompson67897281735876CAN475100,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brody SutterIceHogs (Chi)C41120208691911.11%19122.840111120000130043.75%8000000.4400000001
2Thomas Di PauliIceHogs (Chi)RW40111100398020.00%08621.68000113000060040.00%1000000.2300000000
3Noah JuulsenIceHogs (Chi)D4101160141529463.45%69824.751011616000015000.00%200000.2000000000
4Ryan CollinsIceHogs (Chi)D4011020454130.00%18220.590111140000100057.14%700000.2400000000
5Viktor SvedbergIceHogs (Chi)D4011040433140.00%109223.03000114000016000.00%000000.2200000000
6Matthew HighmoreIceHogs (Chi)C4000-22019106170.00%29624.080001120000160040.68%11800000.0000000000
7Darren KramerIceHogs (Chi)LW4000-2805611550.00%010125.320004150000120058.33%1200000.0000000000
8Sergey TolchinskyIceHogs (Chi)RW4000-220242260.00%28822.180000120000100040.00%2000000.0000000000
9Keith AulieIceHogs (Chi)D4000-160210000.00%48421.07000011000090020.00%500000.0000000000
10Josh JacobsIceHogs (Chi)D4000-220433130.00%17418.60000012000080016.67%1200000.0000000000
11Stu BickelIceHogs (Chi)D4000-220536180.00%28421.020003130000130014.29%700000.0000000000
Stats d'équipe Total ou en Moyenne44246-946052648522632.35%2998022.291232815100001330040.29%27300000.1200000001
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jean-Francois BerubeIceHogs (Chi)10000.8892.142800190000.000004000
2Justin PetersIceHogs (Chi)40310.8812.862100010840000.000040001
Stats d'équipe Total ou en Moyenne50310.8822.762390011930000.000044001


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Brody SutterIceHogs (Chi)C251991-09-25No203 Lbs6 ft5NoNoNo3Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$
Darren KramerIceHogs (Chi)LW251991-11-19No210 Lbs6 ft1NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Jean-Francois BerubeIceHogs (Chi)G251991-07-13No177 Lbs6 ft1NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Josh JacobsIceHogs (Chi)D201996-02-14Yes200 Lbs6 ft2NoNoNo3Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$
Justin PetersIceHogs (Chi)G301986-08-30No210 Lbs6 ft1NoNoNo1Sans RestrictionPro & Farm300,000$0$0$No
Keith AulieIceHogs (Chi)D271989-06-11Yes222 Lbs6 ft6NoNoNo3Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$
Matt MartinIceHogs (Chi)LW271989-05-07No215 Lbs6 ft3NoNoNo1Avec RestrictionPro & Farm1,000,000$0$0$No
Matthew HighmoreIceHogs (Chi)C201996-02-27Yes181 Lbs5 ft11NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Noah JuulsenIceHogs (Chi)D191997-04-02Yes185 Lbs6 ft2NoNoNo4Contrat d'EntréePro & Farm500,000$0$0$No500,000$500,000$500,000$
Ryan CollinsIceHogs (Chi)D201996-05-06Yes216 Lbs6 ft5NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Sergey TolchinskyIceHogs (Chi)RW211995-02-03No165 Lbs5 ft8NoNoNo1Contrat d'EntréePro & Farm608,000$0$0$No
Stu BickelIceHogs (Chi)D301986-10-01No210 Lbs6 ft4NoNoNo1Sans RestrictionPro & Farm300,000$0$0$No
Thomas Di PauliIceHogs (Chi)RW221994-04-28Yes188 Lbs5 ft11NoNoNo3Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$
Viktor SvedbergIceHogs (Chi)D251991-05-23No238 Lbs6 ft8NoNoNo3Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1424.00201 Lbs6 ft22.36386,286$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Darren KramerMatthew HighmoreSergey Tolchinsky40122
2Ryan CollinsBrody SutterThomas Di Pauli30122
3Darren KramerMatthew HighmoreSergey Tolchinsky20122
4Thomas Di PauliBrody SutterKeith Aulie10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Noah JuulsenViktor Svedberg40122
2Keith AulieStu Bickel30122
3Ryan CollinsJosh Jacobs20122
4Noah JuulsenViktor Svedberg10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Darren KramerMatthew HighmoreSergey Tolchinsky60122
2Ryan CollinsBrody SutterThomas Di Pauli40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Noah JuulsenViktor Svedberg60122
2Keith AulieStu Bickel40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Matthew HighmoreDarren Kramer60122
2Sergey TolchinskyBrody Sutter40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Noah JuulsenViktor Svedberg60122
2Keith AulieStu Bickel40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Matthew Highmore60122Noah JuulsenViktor Svedberg60122
2Darren Kramer40122Keith AulieStu Bickel40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Matthew HighmoreDarren Kramer60122
2Sergey TolchinskyBrody Sutter40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Noah JuulsenViktor Svedberg60122
2Keith AulieStu Bickel40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Darren KramerMatthew HighmoreSergey TolchinskyNoah JuulsenViktor Svedberg
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Darren KramerMatthew HighmoreSergey TolchinskyNoah JuulsenViktor Svedberg
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Thomas Di Pauli, Sergey Tolchinsky, Brody SutterThomas Di Pauli, Sergey TolchinskyBrody Sutter
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Josh Jacobs, Ryan Collins, Stu BickelJosh JacobsRyan Collins, Stu Bickel
Tirs de Pénalité
Matthew Highmore, Darren Kramer, Sergey Tolchinsky, Brody Sutter, Thomas Di Pauli
Gardien
#1 : Justin Peters, #2 : Jean-Francois Berube


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Bears1010000002-21010000002-20000000000000.00000000110022252340025121217500.00%6266.67%04611141.44%5512344.72%135026.00%8153110324822
2Monsters2020000006-6000000000002020000006-600.000000001100382523400471318271100.00%8362.50%04611141.44%5512344.72%135026.00%8153110324822
3Stars1000010023-11000010023-10000000000010.50024600110028252340021618174125.00%9277.78%04611141.44%5512344.72%135026.00%8153110324822
Total40300100211-92010010025-32020000006-610.125246001100882523400933148612015.00%23769.57%04611141.44%5512344.72%135026.00%8153110324822
_Since Last GM Reset40300100211-92010010025-32020000006-610.125246001100882523400933148612015.00%23769.57%04611141.44%5512344.72%135026.00%8153110324822
_Vs Conference1000010023-11000010023-10000000000010.50024600110028252340021618174125.00%9277.78%04611141.44%5512344.72%135026.00%8153110324822

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
41L1246889331486100
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
4030100211
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
201010025
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
202000006
Derniers 10 Matchs
WLOTWOTL SOWSOL
030100
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2015.00%23769.57%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
25234001100
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
4611141.44%5512344.72%135026.00%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
8153110324822


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2018-09-072IceHogs0Monsters5LSommaire du Match
4 - 2018-09-0810IceHogs0Monsters1LSommaire du Match
11 - 2018-09-1550Stars3IceHogs2LXSommaire du Match
12 - 2018-09-1662Bears2IceHogs0LSommaire du Match
17 - 2018-09-2181IceHogs-Roadrunners-
18 - 2018-09-2295IceHogs-Roadrunners-
22 - 2018-09-26106Rampage-IceHogs-
25 - 2018-09-29120Monsters-IceHogs-
26 - 2018-09-30135Moose-IceHogs-
31 - 2018-10-05149IceHogs-Admirals-
32 - 2018-10-06160Wild-IceHogs-
33 - 2018-10-07170IceHogs-Wild-
36 - 2018-10-10175Wild-IceHogs-
38 - 2018-10-12188IceHogs-Admirals-
39 - 2018-10-13200IceHogs-Wolves-
43 - 2018-10-17216IceHogs-Griffins-
45 - 2018-10-19231IceHogs-Stars-
46 - 2018-10-20247IceHogs-Rampage-
49 - 2018-10-23254IceHogs-Rampage-
52 - 2018-10-26272Wolves-IceHogs-
53 - 2018-10-27280IceHogs-Admirals-
54 - 2018-10-28294IceHogs-Wolves-
60 - 2018-11-03326Admirals-IceHogs-
61 - 2018-11-04337Rampage-IceHogs-
66 - 2018-11-09356Griffins-IceHogs-
67 - 2018-11-10367Wolves-IceHogs-
73 - 2018-11-16392IceHogs-Griffins-
74 - 2018-11-17407Stars-IceHogs-
75 - 2018-11-18420Griffins-IceHogs-
78 - 2018-11-21431Admirals-IceHogs-
80 - 2018-11-23443IceHogs-Wolves-
85 - 2018-11-28466IceHogs-Wild-
87 - 2018-11-30483Wolves-IceHogs-
88 - 2018-12-01495IceHogs-Wolves-
90 - 2018-12-03507IceHogs-Griffins-
92 - 2018-12-05516Admirals-IceHogs-
94 - 2018-12-07527IceHogs-Wild-
96 - 2018-12-09550Wild-IceHogs-
101 - 2018-12-14569IceHogs-Stars-
103 - 2018-12-16589IceHogs-Rampage-
106 - 2018-12-19602IceHogs-Rampage-
108 - 2018-12-21611Griffins-IceHogs-
109 - 2018-12-22627IceHogs-Wolves-
111 - 2018-12-24637IceHogs-Wild-
115 - 2018-12-28663Moose-IceHogs-
116 - 2018-12-29676Wild-IceHogs-
122 - 2019-01-04691Wolves-IceHogs-
123 - 2019-01-05706IceHogs-Admirals-
127 - 2019-01-09720Penguins-IceHogs-
129 - 2019-01-11730Roadrunners-IceHogs-
130 - 2019-01-12744Roadrunners-IceHogs-
133 - 2019-01-15759Stars-IceHogs-
137 - 2019-01-19785Wild-IceHogs-
138 - 2019-01-20800Rampage-IceHogs-
141 - 2019-01-23810IceHogs-Griffins-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
144 - 2019-01-26833IceHogs-Bears-
145 - 2019-01-27843IceHogs-Penguins-
147 - 2019-01-29847IceHogs-Wolves-
151 - 2019-02-02873Griffins-IceHogs-
158 - 2019-02-09911IceHogs-Moose-
159 - 2019-02-10924IceHogs-Moose-
164 - 2019-02-15948IceHogs-Griffins-
165 - 2019-02-16960Monsters-IceHogs-
166 - 2019-02-17970Stars-IceHogs-
169 - 2019-02-20981Wolves-IceHogs-
171 - 2019-02-22989IceHogs-Admirals-
172 - 2019-02-23998Admirals-IceHogs-
176 - 2019-02-271023Admirals-IceHogs-
179 - 2019-03-021045Griffins-IceHogs-
180 - 2019-03-031056Wolves-IceHogs-
182 - 2019-03-051060Rampage-IceHogs-
185 - 2019-03-081080IceHogs-Stars-
186 - 2019-03-091094IceHogs-Stars-
189 - 2019-03-121106IceHogs-Admirals-
193 - 2019-03-161132IceHogs-Wild-
194 - 2019-03-171149Admirals-IceHogs-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
36 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
11,116$ 54,080$ 15,080$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 3,906$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 180 794$ 142,920$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1340300100211-92010010025-32020000006-61246001100882523400933148612015.00%23769.57%04611141.44%5512344.72%135026.00%8153110324822
Total Saison Régulière40300100211-92010010025-32020000006-61246001100882523400933148612015.00%23769.57%04611141.44%5512344.72%135026.00%8153110324822
Séries
1240400000624-1820200000610-420200000014-1406111700222088303226014331407817211.76%20670.00%05212342.28%3411928.57%276740.30%8256114274421
1240400000624-1820200000610-420200000014-1406111700222088303226014331407817211.76%20670.00%05212342.28%3411928.57%276740.30%8256114274421
Total Séries808000001248-36404000001220-840400000028-2801222340044401766064520286628015634411.76%401270.00%010424642.28%6823828.57%5413440.30%165112229548842