Senators

GP: 76 | W: 53 | L: 16 | OTL: 7 | P: 113
GF: 239 | GA: 133 | PP%: 18.63% | PK%: 89.24%
DG: Marc-André Bilodeau Lamontagne | Morale : 85 | Moyenne d'Équipe : 59
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Matt MoulsonXX100.00635580738282727150606080558685129670
2Justin BaileyXX100.00735565847669706750616472557070189660
3A.J. GreerX100.00675561727973696550636061555050189620
4Vladislav KamenevX100.00795560767869736360616260555050178620
5Max McCormickX100.00565558696963726762555562555050189590
6Gabriel Fontaine (R)X100.00785582557270785550555555556674187580
7Ethan WerekX100.00605571657267675550555555557375189580
8Jean-Sebastien DeaX100.00605574626561726064606060555050185580
9Drew MillerX100.00555555555555555550555555557173184550
10Adam CracknellX100.00555555555555555550555555556061168540
11Grayson DowningX100.00565555555657565550555555557250189540
12Jordan SchmaltzX100.00675563817469687025616066555353188650
13Carl DahlstromX100.00685575617982676825626068555353188640
14Taylor FedunX100.00625567717276626425616064555353189620
15Cody GoloubefX100.00555555605555785525555555558174189570
16Andreas EnglundX100.00555555605555675525555555555353189550
17Matt TaorminaX100.00555555605555775525555555555353189550
18Brady AustinX100.00555555605555725525555555555353189550
19Tim ErixonX100.00555555605555665525555555555757189550
Rayé
1Ryan CarterX100.00555555555555555550555555557172154540
2Dakota MermisX100.00575555605555675525555555555353119540
MOYENNE D'ÉQUIPE100.0061556264656368604157576055616017959
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Eddie Pasquale100.0071717382707076707072556968186700
2Chris Driedger100.0060778179646465636762555961189650
Rayé
MOYENNE D'ÉQUIPE100.006674778167677167696755646518868
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Benoit Groulx61968380735870CAN5061,000,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Justin BaileySenators (Ott)LW/RW7640509032118101902163137222212.78%23174522.97721286230003373503153.02%79400031.0319001996
2Jordan SchmaltzSenators (Ott)D76185573241071512585157479811.46%58166821.951028381083351121361610.00%000000.8800012295
3A.J. GreerSenators (Ott)LW76323668427801781472437416813.17%14178123.44614204629610182939351.09%27400000.76380001042
4Carl DahlstromSenators (Ott)D76243761299210150731343510617.91%76159020.932010301123250220356240.00%000000.7700001647
5Taylor FedunSenators (Ott)D761437512090010867144271019.72%66147719.44718251113041121322130.00%000000.6900000045
6Vladislav KamenevSenators (Ott)LW6323254834980159761433811616.08%9111917.7737102317301171507163.43%13400000.8624000575
7Jean-Sebastien DeaSenators (Ott)RW7617284520552540571414312512.06%6123916.314121636311000013060.00%6500000.7301023132
8Andreas BorgmanOttawa SenatorsD38122840774013142101385611.88%4280321.1591423681561124154200.00%000001.0000000712
9Matt MoulsonSenators (Ott)LW/RW341127381912025113121391119.09%1690426.6129112914600011703257.56%64800000.8416000254
10Max McCormickSenators (Ott)LW761415292159579114163491148.59%7120315.840001400042034156.00%55000000.4814001121
11Grayson DowningSenators (Ott)C7691726325959913090175810.00%4137718.13415203040000306055.23%134900000.3800001422
12Gabriel FontaineSenators (Ott)C7691221256951629163214714.29%6154820.38257730300021574051.64%130900000.2702010215
13Cody GoloubefSenators (Ott)D7661521267315713445142513.33%41111214.64235161251011207210.00%000000.3800111032
14Sonny MilanoOttawa SenatorsLW/RW14912219220483472174612.50%535725.5304417690116781157.67%18900001.1801000320
15Tim ErixonSenators (Ott)D76417212847565293162112.90%3184511.1300003000081100.00%000000.5001001011
16Ethan WerekSenators (Ott)LW761181919240505987227612.64%890111.8601132500041532055.35%15900000.4211000022
17Xavier OuelletOttawa SenatorsD841115104015211861822.22%1320625.78224722011036000.00%000001.4500000111
18Adam CracknellSenators (Ott)RW46661220160452153136411.32%482417.9202214166000002165.79%3800000.2900000121
19Matt TaorminaSenators (Ott)D7611112123605818153106.67%215557.310002300002000.00%000000.4300000020
20Drew MillerSenators (Ott)LW5755109235232030112116.67%24598.062139630001331047.62%12600000.4401001001
21Brady AustinSenators (Ott)D761910103605321187125.56%195927.7900001000017000.00%000000.3400000000
22Andreas EnglundSenators (Ott)D7625783810251992322.22%143154.1501138000041000.00%000000.4411002001
23Dakota MermisSenators (Ott)D24325041522141221325.00%1629812.43213641101264000.00%000000.3400100010
24Ryan CarterSenators (Ott)LW401010405570414.29%21062.671012160000170073.33%1500000.1900000000
Stats d'équipe Total ou en Moyenne14642764687444561275115192615062210603163512.49%5032303615.7483154237702351061117493287591954.51%565000030.6510392514546555
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Eddie PasqualeSenators (Ott)68461570.9201.62412121011113820420.64734680820
2Chris DriedgerSenators (Ott)87100.9141.7448403141620000.0000876100
Stats d'équipe Total ou en Moyenne76531670.9191.63460521312515440420.647347676920


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Link
A.J. GreerSenators (Ott)LW201996-12-14No204 Lbs6 ft3NoNoNo4Contrat d'EntréePro & Farm500,000$0$0$No
Adam CracknellSenators (Ott)RW311985-07-14No210 Lbs6 ft2NoNoNo2Sans RestrictionPro & Farm500,000$0$0$No
Andreas EnglundSenators (Ott)D201996-01-21No189 Lbs6 ft3NoNoNo3Contrat d'EntréePro & Farm300,000$0$0$No
Brady AustinSenators (Ott)D231993-06-15No234 Lbs6 ft3NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Carl DahlstromSenators (Ott)D211995-01-28No228 Lbs6 ft4NoNoNo3Contrat d'EntréePro & Farm500,000$0$0$No
Chris DriedgerSenators (Ott)G221994-05-18No200 Lbs6 ft3NoNoNo1Contrat d'EntréePro & Farm500,000$0$0$No
Cody GoloubefSenators (Ott)D271989-11-30No195 Lbs6 ft1NoNoNo2Avec RestrictionPro & Farm500,000$0$0$No
Dakota MermisSenators (Ott)D231994-01-05No196 Lbs6 ft0NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No
Drew MillerSenators (Ott)LW321984-02-17No180 Lbs6 ft2NoNoNo3Sans RestrictionPro & Farm500,000$0$0$No
Eddie PasqualeSenators (Ott)G261990-11-20No215 Lbs6 ft3NoNoNo3Avec RestrictionPro & Farm500,000$0$0$No
Ethan WerekSenators (Ott)LW251991-06-07No189 Lbs6 ft1NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Gabriel FontaineSenators (Ott)C191997-04-30Yes192 Lbs6 ft1NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No
Grayson DowningSenators (Ott)C241992-04-18No200 Lbs6 ft0NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No
Jean-Sebastien DeaSenators (Ott)RW221994-02-08No175 Lbs5 ft11NoNoNo1Contrat d'EntréePro & Farm300,000$0$0$No
Jordan SchmaltzSenators (Ott)D231993-10-08No190 Lbs6 ft2NoNoNo1Avec RestrictionPro & Farm1,208,000$0$0$No
Justin BaileySenators (Ott)LW/RW211995-07-01No190 Lbs6 ft3NoNoNo1Contrat d'EntréePro & Farm890,000$0$0$No
Matt MoulsonSenators (Ott)LW/RW331983-10-31No200 Lbs6 ft1NoNoNo3Sans RestrictionPro & Farm2,500,000$0$0$No
Matt TaorminaSenators (Ott)D301986-10-19No182 Lbs5 ft10NoNoNo2Sans RestrictionPro & Farm500,000$0$0$No
Max McCormickSenators (Ott)LW241992-04-30No185 Lbs5 ft11NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Ryan CarterSenators (Ott)LW331983-08-02No205 Lbs6 ft1NoNoNo1Sans RestrictionPro & Farm500,000$0$0$No
Taylor FedunSenators (Ott)D281988-06-03No200 Lbs6 ft0NoNoNo3Sans RestrictionPro & Farm500,000$0$0$No
Tim ErixonSenators (Ott)D251991-02-23No200 Lbs6 ft2NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Vladislav KamenevSenators (Ott)LW201996-08-12No203 Lbs6 ft2NoNoNo1Contrat d'EntréePro & Farm925,000$0$0$No
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2324.87198 Lbs6 ft12.00574,913$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Matt MoulsonGabriel FontaineJustin Bailey40122
2A.J. GreerGrayson DowningJean-Sebastien Dea30122
3Vladislav KamenevMatt MoulsonJustin Bailey20122
4Max McCormickA.J. GreerVladislav Kamenev10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jordan SchmaltzCarl Dahlstrom40122
2Taylor FedunCody Goloubef30122
3Matt TaorminaAndreas Englund20122
4Tim ErixonBrady Austin10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Matt MoulsonGabriel FontaineJustin Bailey60122
2A.J. GreerGrayson DowningJean-Sebastien Dea40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jordan SchmaltzCarl Dahlstrom60122
2Taylor FedunCody Goloubef40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Matt MoulsonJustin Bailey60122
2A.J. GreerVladislav Kamenev40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jordan SchmaltzCarl Dahlstrom60122
2Taylor FedunCody Goloubef40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Matt Moulson60122Jordan SchmaltzCarl Dahlstrom60122
2Justin Bailey40122Taylor FedunCody Goloubef40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Matt MoulsonJustin Bailey60122
2A.J. GreerVladislav Kamenev40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jordan SchmaltzCarl Dahlstrom60122
2Taylor FedunCody Goloubef40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Matt MoulsonGabriel FontaineJustin BaileyJordan SchmaltzCarl Dahlstrom
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Matt MoulsonGabriel FontaineJustin BaileyJordan SchmaltzCarl Dahlstrom
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Ethan Werek, Drew Miller, Max McCormickEthan Werek, Drew MillerMax McCormick
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Matt Taormina, Andreas Englund, Tim ErixonMatt TaorminaAndreas Englund, Tim Erixon
Tirs de Pénalité
Matt Moulson, Justin Bailey, A.J. Greer, Vladislav Kamenev, Max McCormick
Gardien
#1 : Eddie Pasquale, #2 : Chris Driedger


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans42200000710-3211000005502110000025-340.50071219009664741068648616691499932868224416.67%37781.08%01218226453.80%1119212152.76%585105155.66%212315251571520914491
2Bears210000017431000000134-11100000040430.7507121901966474105764861669149431446431715.88%18194.44%01218226453.80%1119212152.76%585105155.66%212315251571520914491
3Bruins2000000246-21000000123-11000000123-120.500471100966474102664861669149411716318112.50%4175.00%01218226453.80%1119212152.76%585105155.66%212315251571520914491
4Checkers440000002061422000000624220000001441081.0002037570196647410154648616691497121491064250.00%210100.00%21218226453.80%1119212152.76%585105155.66%212315251571520914491
5Comets64101000231112321000001284320010001138100.833234164019664741016464861669149139319912135822.86%41782.93%01218226453.80%1119212152.76%585105155.66%212315251571520914491
6Crunch6400100121147320000011064320010001183110.9172139600096647410119648616691491313510913435617.14%51590.20%01218226453.80%1119212152.76%585105155.66%212315251571520914491
7Devils60500010615-930300000310-73020001035-220.167681410966474101266486166914914549891234312.33%40490.00%01218226453.80%1119212152.76%585105155.66%212315251571520914491
8Griffins430000101688210000107252200000096381.000162339019664741085648616691498125589019842.11%25580.00%01218226453.80%1119212152.76%585105155.66%212315251571520914491
9Marlies12120000007286466000000382366600000034628241.0007213220406966474104606486166914922679119290381950.00%49197.96%21218226453.80%1119212152.76%585105155.66%212315251571520914491
10Monsters87100000171164310000098144000000835140.8751729460196647410186648616691491644213216966812.12%56591.07%01218226453.80%1119212152.76%585105155.66%212315251571520914491
11Moose430000011165210000013302200000083570.87511193000966474101136486166914979206111018316.67%28389.29%01218226453.80%1119212152.76%585105155.66%212315251571520914491
12Phantoms211000005411010000012-11100000042220.5005914009664741046648616691494111284817423.53%13284.62%01218226453.80%1119212152.76%585105155.66%212315251571520914491
13Rocket1245001112124-3622001011012-2623000101112-1120.5002135560296647410275648616691492246019327770811.43%66887.88%11218226453.80%1119212152.76%585105155.66%212315251571520914491
14Sound Tigers22000000624110000003121100000031241.00061117009664741044648616691493717304110330.00%15286.67%01218226453.80%1119212152.76%585105155.66%212315251571520914491
Total76481602136239133106382110001151137142382760202112662641130.743239420659213966474101969648616691491546466114017144087618.63%4745189.24%51218226453.80%1119212152.76%585105155.66%212315251571520914491
16Wolf Pack2110000034-11010000013-21100000021120.5003691096647410466486166914925132549400.00%100100.00%01218226453.80%1119212152.76%585105155.66%212315251571520914491
_Since Last GM Reset76481602136239133106382110001151137142382760202112662641130.743239420659213966474101969648616691491546466114017144087618.63%4745189.24%51218226453.80%1119212152.76%585105155.66%212315251571520914491
_Vs Conference34198010158066141776000043540-51712201011452619470.691801402202296647410763648616691497062185367482182712.39%2352390.21%01218226453.80%1119212152.76%585105155.66%212315251571520914491
_Vs Division2650010026446181320000022630-4133001000381622140.269641121762396647410659648616691495261673995791611911.80%1731491.91%21218226453.80%1119212152.76%585105155.66%212315251571520914491

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
76113L12394206591969154646611401714213
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
7648162136239133
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
382110011511371
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
38276202112662
Derniers 10 Matchs
WLOTWOTL SOWSOL
610003
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
4087618.63%4745189.24%5
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
6486166914996647410
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1218226453.80%1119212152.76%585105155.66%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
212315251571520914491


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
4 - 2018-09-0812Senators5Comets1WSommaire du Match
10 - 2018-09-1438Senators4Moose2WSommaire du Match
11 - 2018-09-1549Senators4Moose1WSommaire du Match
15 - 2018-09-1964Devils4Senators1LSommaire du Match
17 - 2018-09-2171Wolf Pack3Senators1LSommaire du Match
18 - 2018-09-2286Americans2Senators3WSommaire du Match
22 - 2018-09-26105Devils3Senators1LSommaire du Match
24 - 2018-09-28108Griffins2Senators3WXXSommaire du Match
25 - 2018-09-29121Griffins0Senators4WSommaire du Match
29 - 2018-10-03137Senators2Rocket4LSommaire du Match
31 - 2018-10-05140Senators4Crunch3WSommaire du Match
32 - 2018-10-06157Senators2Crunch1WSommaire du Match
38 - 2018-10-12183Marlies0Senators7WSommaire du Match
39 - 2018-10-13196Marlies0Senators5WSommaire du Match
43 - 2018-10-17218Comets3Senators5WSommaire du Match
45 - 2018-10-19225Marlies1Senators6WSommaire du Match
46 - 2018-10-20236Sound Tigers1Senators3WSommaire du Match
49 - 2018-10-23253Senators6Checkers2WSommaire du Match
50 - 2018-10-24258Senators8Checkers2WSommaire du Match
53 - 2018-10-27279Senators5Comets2WSommaire du Match
57 - 2018-10-31305Senators0Rocket3LSommaire du Match
59 - 2018-11-02309Comets3Senators1LSommaire du Match
60 - 2018-11-03324Phantoms2Senators1LSommaire du Match
66 - 2018-11-09351Rocket3Senators2LSommaire du Match
67 - 2018-11-10365Bruins3Senators2LXXSommaire du Match
68 - 2018-11-11378Senators4Marlies0WSommaire du Match
71 - 2018-11-14387Senators2Rocket1WXXSommaire du Match
73 - 2018-11-16394Senators4Phantoms2WSommaire du Match
74 - 2018-11-17410Senators0Devils2LSommaire du Match
78 - 2018-11-21430Senators0Americans4LSommaire du Match
80 - 2018-11-23436Senators3Monsters1WSommaire du Match
81 - 2018-11-24449Senators2Monsters1WSommaire du Match
85 - 2018-11-28464Senators4Marlies2WSommaire du Match
86 - 2018-11-29473Rocket3Senators2LSommaire du Match
88 - 2018-12-01491Devils3Senators1LSommaire du Match
92 - 2018-12-05513Senators2Rocket1WSommaire du Match
94 - 2018-12-07519Checkers2Senators4WSommaire du Match
95 - 2018-12-08534Checkers0Senators2WSommaire du Match
99 - 2018-12-12553Monsters3Senators0LSommaire du Match
101 - 2018-12-14564Senators3Griffins2WSommaire du Match
102 - 2018-12-15579Senators6Griffins4WSommaire du Match
106 - 2018-12-19599Senators4Rocket0WSommaire du Match
108 - 2018-12-21605Senators5Crunch4WXSommaire du Match
109 - 2018-12-22621Senators1Comets0WXSommaire du Match
115 - 2018-12-28656Marlies0Senators5WSommaire du Match
116 - 2018-12-29674Marlies1Senators7WSommaire du Match
123 - 2019-01-05705Senators2Devils1WXXSommaire du Match
124 - 2019-01-06711Senators4Bears0WSommaire du Match
126 - 2019-01-08714Senators9Marlies2WSommaire du Match
129 - 2019-01-11727Senators1Rocket3LSommaire du Match
130 - 2019-01-12741Rocket3Senators2LXSommaire du Match
131 - 2019-01-13753Senators5Marlies1WSommaire du Match
134 - 2019-01-16765Crunch3Senators6WSommaire du Match
136 - 2019-01-18769Monsters2Senators3WSommaire du Match
137 - 2019-01-19783Monsters1Senators2WSommaire du Match
139 - 2019-01-21804Rocket2Senators1LXXSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
143 - 2019-01-25823Senators1Devils2LSommaire du Match
144 - 2019-01-26834Senators2Americans1WSommaire du Match
150 - 2019-02-01860Moose2Senators1LXXSommaire du Match
151 - 2019-02-02872Moose1Senators2WSommaire du Match
156 - 2019-02-07896Senators1Monsters0WSommaire du Match
157 - 2019-02-08898Senators2Monsters1WSommaire du Match
160 - 2019-02-11931Senators7Marlies0WSommaire du Match
164 - 2019-02-15947Rocket1Senators2WSommaire du Match
165 - 2019-02-16959Rocket0Senators1WSommaire du Match
169 - 2019-02-20979Comets2Senators6WSommaire du Match
171 - 2019-02-22986Senators2Bruins3LXXSommaire du Match
172 - 2019-02-231002Senators3Sound Tigers1WSommaire du Match
176 - 2019-02-271019Crunch2Senators1LXXSommaire du Match
179 - 2019-03-021042Senators2Wolf Pack1WSommaire du Match
183 - 2019-03-061064Crunch1Senators3WSommaire du Match
185 - 2019-03-081073Bears4Senators3LXXSommaire du Match
186 - 2019-03-091090Monsters2Senators4WSommaire du Match
190 - 2019-03-131108Marlies0Senators8WSommaire du Match
193 - 2019-03-161128Senators5Marlies1WSommaire du Match
194 - 2019-03-171142Americans3Senators2LSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
1,112,307$ 132,230$ 110,750$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 112,333$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 5,836$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
137648160213623913310638211000115113714238276020211266264113239420659213966474101969648616691491546466114017144087618.63%4745189.24%51218226453.80%1119212152.76%585105155.66%212315251571520914491
Total Saison Régulière7648160213623913310638211000115113714238276020211266264113239420659213966474101969648616691491546466114017144087618.63%4745189.24%51218226453.80%1119212152.76%585105155.66%212315251571520914491