Monsters

GP: 5 | W: 4 | L: 1 | OTL: 0 | P: 8
GF: 17 | GA: 7 | PP%: 29.63% | PK%: 93.55%
DG: Patrick Auger | Morale : 54 | Moyenne d'Équipe : N/A
Prochain matchs #72 vs Comets
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Dylan Strome (R)X100.0063557082757070797370706555737215500
2Oskar Lindblom (R)X100.0076557184707273765063656555707015500
3Chris KellyX100.0068557875776867645062606155757515500
4Daniel CatenacciX100.0059557262666269555055556055757415500
5Jake VirtanenX100.0086557480797583776067707855707015500
6Daniel AudetteX100.0058557267625969555055555955717515500
7Nikita SoshnikovX100.0084557881676264655060616255525215500
8Nick TarnaskyX100.0074555863817964555055555555646515500
9Mike BrownX100.0060556669756954555055555555697015500
10Nick CousinsX100.0077557375696667766865737855656415500
11Oscar LindbergX100.0084557678807882718163707655716815500
12Zack StortiniX100.0064555761817974555055555555656515500
13Ryan HaggertyX100.0071556968756966555055555555505015500
14Madison BoweyX100.0079557986697464782571607555787815500
15Brian LashoffX100.0055555560555578552555555555606115500
16Mike ReillyX100.0075558186577658842577637755757315500
17Nick JensenX100.0079558774687979802571608855807715500
18Ryan SproulX100.0068556676677964742564626855707015500
19Ville PokkaX100.0055555760575776572557575755535315500
Rayé
1Brandon AldersonX100.0056555555575859555055555555747214500
2Buddy RobinsonX100.0056555555575858555055555555747214500
3Cody Kunyk (R)X100.0056555555575858555055555555737114500
4Jayce Hawryluk (R)X100.0060557063676269555055555555505014500
5Colin White (R)X100.0056555555565757666055555555737114500
6Matt Buckles (R)X100.0082558255795454555055555555505014500
7Zach O'Brien (R)X100.0070556855546168555055555555505014500
8Emil Pettersson (R)X100.0055555555555555555055555555757114500
9Akim Aliu (R)X100.0056555555585960555055555555757514500
10Tim BozonX100.0074556762746864555055555555505014500
11Joshua WinquistX100.0056555555555655555055555555505014500
12Stephen MacAulay (R)X100.0056555962686654555055555555505014500
13Olivier Archambault (R)X100.0055556255545454555055555555505014500
14Mike SisloX100.0056555555555555555055555555505014500
15Quinton HowdenX100.0056556365686669555055555555565614500
16Lauri KorpikoskiX100.0055555555555555555055555555747314500
17Josiah DidierX100.0055555560555559552555555555535314500
18Kyle BurroughsX100.0056555660565663562556565655535314500
19Robin Norell (R)X100.0055555560555567552555555555535314500
20John NegrinX100.0055555560555558552555555555535314500
21Jeremy Roy (R)X100.0056555560555556552555555555626214500
22Brennan Menell (R)X100.0055555560555556552555555555555514500
23Mike WeberX100.0055555560555562552555555555697014500
24Will O'NeillX100.0057555560555567552555555555535314500
MOYENNE D'ÉQUIPE100.006455646564636460445858605563631490
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jack Campbell100.007377837370707570677155696715500
2Eamon McAdam100.006270707965656565686455606215500
Rayé
1Marcus Hogberg100.005555555555555555555555656514500
2Filip Gustavsson (R)100.005555555555555555555555506014500
3Jeff Malcolm100.005464597158585858595855545614500
MOYENNE D'ÉQUIPE100.00606464676161626161615560621490
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Randy Ladouceur42626738807060CAN564100,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mike ReillyMonsters (Clb)D5167-160710102510.00%311623.35156920000022010.00%000001.2000000001
2Jake VirtanenMonsters (Clb)RW53363406112362213.04%011923.881015210112260065.67%6700001.0000000020
3Oscar LindbergMonsters (Clb)C5516220572081425.00%210521.052135211011282075.90%8300011.1400000100
4Oskar LindblomMonsters (Clb)LW505510034113100.00%07615.30022321000020050.00%200001.3100000000
5Nick CousinsMonsters (Clb)C54152203121001140.00%09819.662023190000171071.91%8900001.0200000011
6Ryan SproulMonsters (Clb)D5044420345020.00%510721.57000418000024000.00%000000.7400000000
7Madison BoweyMonsters (Clb)D50334601034020.00%310721.41022318000022000.00%000000.5600000000
8Nikita SoshnikovMonsters (Clb)RW52132407251340.00%08016.17101219000001075.00%400000.7400000010
9Nick JensenMonsters (Clb)D5123-1209684512.50%912024.03123722000026000.00%000000.5000000001
10Dylan StromeMonsters (Clb)C5011060511134110.00%08116.38000000001150069.09%5500000.2400000000
11Daniel AudetteMonsters (Clb)LW51010205594311.11%16613.2900000000000025.00%400000.3000000000
12Brian LashoffMonsters (Clb)D5011120720010.00%77414.930000000008000.00%000000.2700000000
13Nick TarnaskyMonsters (Clb)LW50112100601000.00%08116.39011019000000066.67%300000.2400000000
14Chris KellyMonsters (Clb)C5000000232120.00%0326.49000000000120068.18%2200000.0000000000
15Daniel CatenacciMonsters (Clb)RW5000080816130.00%26613.2800000000000066.67%300000.0000000000
16Mike BrownMonsters (Clb)RW5000000000000.00%000.130000000000000.00%000000.0000000000
17Zack StortiniMonsters (Clb)C5000-120100010.00%081.6700001000000033.33%300000.0000000000
18Ryan HaggertyMonsters (Clb)RW5000000001120.00%0194.000000000000000.00%000000.0000000000
19Ville PokkaMonsters (Clb)D5000160802140.00%27314.650000200004000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne951729461964095811303610113.08%34143815.14813214120711242124169.85%33500010.6400000143
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jack CampbellMonsters (Clb)54100.9111.40300027790100.000050200
Stats d'équipe Total ou en Moyenne54100.9111.40300027790100.000050200


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Akim AliuMonsters (Clb)RW271989-04-23Yes225 Lbs6 ft4NoNoNo3Avec RestrictionPro & Farm500,000$0$0$No500,000$500,000$
Brandon AldersonMonsters (Clb)RW241992-01-21No202 Lbs6 ft4NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Brennan MenellMonsters (Clb)D191997-05-24Yes183 Lbs5 ft11NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Brian LashoffMonsters (Clb)D261990-07-15No212 Lbs6 ft3NoNoNo4Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$300,000$
Buddy RobinsonMonsters (Clb)RW251991-09-30No235 Lbs6 ft5NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Chris KellyMonsters (Clb)C361980-11-11No198 Lbs6 ft0NoNoNo2Sans RestrictionPro & Farm300,000$0$0$No300,000$
Cody KunykMonsters (Clb)RW261990-05-20Yes195 Lbs5 ft11NoNoNo3Avec RestrictionPro & Farm500,000$0$0$No500,000$500,000$
Colin WhiteMonsters (Clb)C191997-01-30Yes190 Lbs6 ft1NoNoNo4Contrat d'EntréePro & Farm900,000$0$0$No900,000$900,000$900,000$
Daniel AudetteMonsters (Clb)LW201996-05-06No176 Lbs5 ft8NoNoNo3Contrat d'EntréePro & Farm500,000$0$0$No500,000$500,000$
Daniel CatenacciMonsters (Clb)RW231993-03-09No186 Lbs5 ft9NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Dylan StromeMonsters (Clb)C191997-03-07Yes185 Lbs6 ft3NoNoNo4Contrat d'EntréePro & Farm900,000$0$0$No900,000$900,000$900,000$
Eamon McAdamMonsters (Clb)G221994-09-23No199 Lbs6 ft3NoNoNo3Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$
Emil PetterssonMonsters (Clb)C221994-01-14Yes176 Lbs6 ft2NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Filip GustavssonMonsters (Clb)G181998-06-07Yes185 Lbs6 ft2NoNoNo4Contrat d'EntréePro & Farm500,000$0$0$No500,000$500,000$500,000$
Jack CampbellMonsters (Clb)G251992-01-09No195 Lbs6 ft3NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Jake VirtanenMonsters (Clb)RW201996-08-17No208 Lbs6 ft1NoNoNo1Contrat d'EntréePro & Farm1,744,000$0$0$No
Jayce HawrylukMonsters (Clb)LW211996-01-01Yes188 Lbs5 ft10NoNoNo3Contrat d'EntréePro & Farm500,000$0$0$No500,000$500,000$
Jeff MalcolmMonsters (Clb)G271989-04-13No179 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Jeremy RoyMonsters (Clb)D191997-05-14Yes187 Lbs6 ft0NoNoNo4Contrat d'EntréePro & Farm500,000$0$0$No500,000$500,000$500,000$
John NegrinMonsters (Clb)D271989-03-25No194 Lbs6 ft2NoNoNo3Avec RestrictionPro & Farm500,000$0$0$No500,000$500,000$
Joshua WinquistMonsters (Clb)LW231993-09-06No185 Lbs5 ft11NoNoNo3Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$
Josiah DidierMonsters (Clb)D231993-04-08No203 Lbs6 ft2NoNoNo3Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$
Kyle BurroughsMonsters (Clb)D211995-07-12No198 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm630,000$0$0$No
Lauri KorpikoskiMonsters (Clb)LW301986-07-28No205 Lbs6 ft1NoNoNo1Sans RestrictionPro & Farm976,882$0$0$No
Madison BoweyMonsters (Clb)D211995-04-22No194 Lbs6 ft1NoNoNo1Contrat d'EntréePro & Farm894,000$0$0$No
Marcus HogbergMonsters (Clb)G221994-11-25No209 Lbs6 ft5NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Matt BucklesMonsters (Clb)C211995-05-05Yes218 Lbs6 ft3NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Mike BrownMonsters (Clb)RW311985-06-23No205 Lbs5 ft11NoNoNo1Sans RestrictionPro & Farm300,000$0$0$No
Mike ReillyMonsters (Clb)D231993-07-13No156 Lbs5 ft11NoNoNo4Avec RestrictionPro & Farm500,000$0$0$No500,000$500,000$500,000$
Mike SisloMonsters (Clb)RW281988-01-19No195 Lbs5 ft11NoNoNo1Sans RestrictionPro & Farm300,000$0$0$No
Mike WeberMonsters (Clb)D291987-12-15No212 Lbs6 ft2NoNoNo1Sans RestrictionPro & Farm300,000$0$0$No
Nick CousinsMonsters (Clb)C231993-07-19No169 Lbs5 ft10NoNoNo3Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$
Nick JensenMonsters (Clb)D261990-09-20No196 Lbs6 ft0NoNoNo3Avec RestrictionPro & Farm1,000,000$0$0$No1,000,000$1,000,000$
Nick TarnaskyMonsters (Clb)LW321984-11-24No230 Lbs6 ft2NoNoNo4Sans RestrictionPro & Farm300,000$0$0$No300,000$300,000$300,000$
Nikita SoshnikovMonsters (Clb)RW231993-10-14No183 Lbs5 ft11NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Olivier ArchambaultMonsters (Clb)LW231993-02-15Yes176 Lbs5 ft11NoNoNo4Avec RestrictionPro & Farm500,000$0$0$No500,000$500,000$500,000$
Oscar LindbergMonsters (Clb)C251991-10-28No195 Lbs6 ft1NoNoNo3Avec RestrictionPro & Farm500,000$0$0$No500,000$500,000$
Oskar LindblomMonsters (Clb)LW201996-08-15Yes192 Lbs6 ft1NoNoNo4Contrat d'EntréePro & Farm500,000$0$0$No500,000$500,000$500,000$
Quinton HowdenMonsters (Clb)C241992-01-20No189 Lbs6 ft2NoNoNo3Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$
Robin NorellMonsters (Clb)D211995-02-17Yes195 Lbs5 ft11NoNoNo3Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$
Ryan HaggertyMonsters (Clb)RW231993-03-03No201 Lbs6 ft0NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Ryan SproulMonsters (Clb)D241993-01-12No206 Lbs6 ft4NoNoNo3Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$
Stephen MacAulayMonsters (Clb)C241992-04-20Yes182 Lbs6 ft2NoNoNo4Avec RestrictionPro & Farm500,000$0$0$No500,000$500,000$500,000$
Tim BozonMonsters (Clb)LW221994-03-24No196 Lbs6 ft1NoNoNo3Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$
Ville PokkaMonsters (Clb)D221994-06-02No214 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm500,000$0$0$No
Will O'NeillMonsters (Clb)D281988-04-27No190 Lbs6 ft1NoNoNo1Sans RestrictionPro & Farm500,000$0$0$No
Zach O'BrienMonsters (Clb)RW241992-06-29Yes192 Lbs5 ft11NoNoNo4Avec RestrictionPro & Farm500,000$0$0$No500,000$500,000$500,000$
Zack StortiniMonsters (Clb)C311985-09-10No230 Lbs6 ft4NoNoNo3Sans RestrictionPro & Farm500,000$0$0$No500,000$500,000$
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
4824.00196 Lbs6 ft12.71469,685$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Oskar LindblomOscar LindbergJake Virtanen40122
2Nick TarnaskyNick CousinsNikita Soshnikov30122
3Daniel AudetteDylan StromeDaniel Catenacci20122
4Jake VirtanenChris KellyRyan Haggerty10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Nick JensenMike Reilly40122
2Madison BoweyRyan Sproul30122
3Ville PokkaBrian Lashoff20122
4Nick JensenMike Reilly10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Oskar LindblomOscar LindbergJake Virtanen60122
2Nick TarnaskyNick CousinsNikita Soshnikov40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Nick JensenMike Reilly60122
2Madison BoweyRyan Sproul40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Jake VirtanenOscar Lindberg60122
2Nick CousinsDylan Strome40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Nick JensenMike Reilly60122
2Madison BoweyRyan Sproul40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Jake Virtanen60122Nick JensenMike Reilly60122
2Oscar Lindberg40122Madison BoweyRyan Sproul40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Jake VirtanenOscar Lindberg60122
2Nick CousinsDylan Strome40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Nick JensenMike Reilly60122
2Madison BoweyRyan Sproul40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Oskar LindblomOscar LindbergJake VirtanenNick JensenMike Reilly
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Oskar LindblomOscar LindbergJake VirtanenNick JensenMike Reilly
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Zack Stortini, Mike Brown, Chris KellyZack Stortini, Mike BrownChris Kelly
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Ville Pokka, Brian Lashoff, Madison BoweyVille PokkaBrian Lashoff, Madison Bowey
Tirs de Pénalité
Jake Virtanen, Oscar Lindberg, Nick Cousins, Dylan Strome, Oskar Lindblom
Gardien
#1 : Jack Campbell, #2 : Eamon McAdam


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1IceHogs22000000606220000006060000000000041.0006915027820474244440381224358337.50%110100.00%011215771.34%7211264.29%506675.76%14510794315932
2Marlies11000000725000000000001100000072521.0007121900782040424444015614285360.00%70100.00%111215771.34%7211264.29%506675.76%14510794315932
3Penguins2110000045-12110000045-10000000000020.50048120078204342444402616263214214.29%13284.62%011215771.34%7211264.29%506675.76%14510794315932
Total54100000177104310000010551100000072580.80017294602782013042444407934649527829.63%31293.55%111215771.34%7211264.29%506675.76%14510794315932
_Since Last GM Reset54100000177104310000010551100000072580.80017294602782013042444407934649527829.63%31293.55%111215771.34%7211264.29%506675.76%14510794315932
_Vs Conference2110000045-12110000045-10000000000020.50048120078204342444402616263214214.29%13284.62%011215771.34%7211264.29%506675.76%14510794315932
_Vs Division10000000725000000000001000000072500.0007121900782040424444015614285360.00%70100.00%111215771.34%7211264.29%506675.76%14510794315932

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
58W11729461307934649502
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
5410000177
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4310000105
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
110000072
Derniers 10 Matchs
WLOTWOTL SOWSOL
410000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
27829.63%31293.55%1
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
42444407820
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
11215771.34%7211264.29%506675.76%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
14510794315932


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2018-09-072IceHogs0Monsters5WSommaire du Match
4 - 2018-09-0810IceHogs0Monsters1WSommaire du Match
6 - 2018-09-1027Monsters7Marlies2WSommaire du Match
9 - 2018-09-1332Penguins3Monsters1LSommaire du Match
11 - 2018-09-1547Penguins2Monsters3WSommaire du Match
17 - 2018-09-2172Monsters-Comets-
18 - 2018-09-2290Monsters-Devils-
22 - 2018-09-26102Monsters-Wolves-
24 - 2018-09-28112Monsters-Admirals-
25 - 2018-09-29120Monsters-IceHogs-
31 - 2018-10-05141Marlies-Monsters-
33 - 2018-10-07169Griffins-Monsters-
36 - 2018-10-10177Monsters-Americans-
38 - 2018-10-12182Rocket-Monsters-
39 - 2018-10-13192Rocket-Monsters-
45 - 2018-10-19223Monsters-Bears-
46 - 2018-10-20238Monsters-Bears-
52 - 2018-10-26266Marlies-Monsters-
54 - 2018-10-28293Monsters-Marlies-
57 - 2018-10-31301Marlies-Monsters-
59 - 2018-11-02308Crunch-Monsters-
60 - 2018-11-03318Crunch-Monsters-
64 - 2018-11-07343Monsters-Phantoms-
66 - 2018-11-09354Monsters-Penguins-
67 - 2018-11-10369Monsters-Phantoms-
73 - 2018-11-16395Monsters-Americans-
74 - 2018-11-17404Americans-Monsters-
78 - 2018-11-21426Monsters-Griffins-
80 - 2018-11-23436Senators-Monsters-
81 - 2018-11-24449Senators-Monsters-
85 - 2018-11-28465Americans-Monsters-
87 - 2018-11-30477Griffins-Monsters-
88 - 2018-12-01492Monsters-Griffins-
95 - 2018-12-08531Comets-Monsters-
96 - 2018-12-09545Comets-Monsters-
99 - 2018-12-12553Monsters-Senators-
101 - 2018-12-14563Monsters-Crunch-
102 - 2018-12-15582Monsters-Devils-
108 - 2018-12-21610Monsters-Rocket-
109 - 2018-12-22616Monsters-Rocket-
113 - 2018-12-26647Marlies-Monsters-
114 - 2018-12-27653Wolves-Monsters-
116 - 2018-12-29675Wolves-Monsters-
122 - 2019-01-04688Monsters-Penguins-
123 - 2019-01-05702Monsters-Crunch-
126 - 2019-01-08713Monsters-Checkers-
127 - 2019-01-09716Monsters-Checkers-
130 - 2019-01-12739Devils-Monsters-
131 - 2019-01-13749Devils-Monsters-
133 - 2019-01-15757Americans-Monsters-
136 - 2019-01-18769Monsters-Senators-
137 - 2019-01-19783Monsters-Senators-
138 - 2019-01-20799Monsters-Comets-
141 - 2019-01-23811Monsters-Americans-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
143 - 2019-01-25819Admirals-Monsters-
145 - 2019-01-27841Admirals-Monsters-
149 - 2019-01-31855Rocket-Monsters-
150 - 2019-02-01859Rocket-Monsters-
151 - 2019-02-02868Monsters-Marlies-
156 - 2019-02-07896Senators-Monsters-
157 - 2019-02-08898Senators-Monsters-
162 - 2019-02-13934Monsters-Admirals-
164 - 2019-02-15950Monsters-Wolves-
165 - 2019-02-16960Monsters-IceHogs-
171 - 2019-02-22988Monsters-Americans-
172 - 2019-02-23996Bears-Monsters-
173 - 2019-02-241009Bears-Monsters-
178 - 2019-03-011028Phantoms-Monsters-
179 - 2019-03-021041Phantoms-Monsters-
183 - 2019-03-061066Monsters-Rocket-
185 - 2019-03-081078Monsters-Rocket-
186 - 2019-03-091090Monsters-Senators-
188 - 2019-03-111104Americans-Monsters-
191 - 2019-03-141114Checkers-Monsters-
192 - 2019-03-151115Checkers-Monsters-
194 - 2019-03-171145Monsters-Marlies-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
34 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
21,814$ 225,449$ 154,258$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 15,106$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 181 1,678$ 303,718$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
13541000001771043100000105511000000725817294602782013042444407934649527829.63%31293.55%111215771.34%7211264.29%506675.76%14510794315932
Total Saison Régulière541000001771043100000105511000000725817294602782013042444407934649527829.63%31293.55%111215771.34%7211264.29%506675.76%14510794315932
Séries
1220164000004919301082000002191210820000028101832498313206121817246614315614621405121392396141149.93%1661093.98%338167356.61%36566654.80%16827960.22%509338516168266131
1220164000004919301082000002191210820000028101832498313206121817246614315614621405121392396141149.93%1661093.98%338167356.61%36566654.80%16827960.22%509338516168266131
Total Séries4032800000983860201640000042182420164000005620366498166264012243634493228631229242810242784792282289.93%3322093.98%6762134656.61%730133254.80%33655860.22%10186771032337533263