Condors

GP: 21 | W: 3 | L: 16 | OTL: 2 | P: 8
GF: 44 | GA: 84 | PP%: 10.92% | PK%: 82.11%
DG: Jonathan Legault | Morale : 37 | Moyenne d'Équipe : 57
Prochain matchs #400 vs Gulls
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1C.J. Smith (R)X100.00735580736666696050606255556771155610
2Alex Schoenborn (R)X100.00735561627871675550555556557475132580
3Carter BancksX100.00675565626762725550555555557375146570
4Matheson Iacopelli (R)X100.00805580557960695850555855555050155570
5Jake DowellX100.00605558607670695550555555556061143570
6Bryan BickellX100.00565555555758585550555555557575146550
7Mitchell Stephens (R)X100.00565555555555555550555555555050155530
8Ryan Gropp (R)X100.00565555555555555550555555555050155530
9Adam Gilmour (R)X100.00565555555859605550555555555050143530
10Jacob MacDonald (R)X100.00605564617465656025606055555353149580
11Andrei MarkovX100.00555555605555555525555555558792155570
12Jake CheliosX100.00595559605959705925595959555353146570
13Parker Wotherspoon (R)X100.00555555605555775525555555555555155550
14Petter GranbergX100.00555555605555575525555555555353144540
15Mitchell Vande Sompel (R)X100.00555555605555555525555555555555155540
16Trevor CarrickX100.00555555605555675525555555555353143540
Rayé
MOYENNE D'ÉQUIPE100.0061556060626064563956565555606114956
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Steve Michalek100.0069696579717169677070556866150680
2John Muse100.0062696666676767646766556465146640
Rayé
1Jeff Zatkoff100.0054685770646459895863557370129640
2Evan Cowley (R)100.0055555555555555555555555055138530
MOYENNE D'ÉQUIPE100.006065616864646369636455646414162
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Dan Bylsma63756277815976USA475100,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jake DowellCondors (Edm)C218715-5220834713937755.76%1040819.4322437840000100029.82%5700000.7400000221
2Adam GilmourCondors (Edm)LW216511-3280264758164910.34%821410.2400012000000062.50%1600001.0200000013
3Alex SchoenbornCondors (Edm)RW13369-531540303712248.11%423117.8213417610000120050.00%1400000.7800001100
4Trevor CarrickCondors (Edm)D21628-826029282181228.57%2625011.9300031000130000.00%000000.6400000111
5Jacob MacDonaldCondors (Edm)D13257-459537183113346.45%2026020.012242558000033000.00%000000.5400100010
6Petter GranbergCondors (Edm)D21347-1661558284314346.98%3935016.682132550000032000.00%000000.4000001001
7Parker WotherspoonCondors (Edm)D2213-1001532166.67%73919.9620237000010000.00%000001.5000000000
8Jake CheliosCondors (Edm)D2033340224010.00%14321.8700028000010000.00%000001.3700000010
9Andrei MarkovCondors (Edm)D2022000125240.00%13919.5002247000013000.00%000001.0300000000
10Bryan BickellCondors (Edm)RW2101-2601130333.33%03316.750001100000000100.00%100000.6000000000
11C.J. SmithCondors (Edm)LW2011100466130.00%14824.28000270000100048.00%2500000.4100000000
12Carter BancksCondors (Edm)LW2011-320442140.00%14221.4801118000070050.00%1800000.4700000000
13Matheson IacopelliCondors (Edm)C2011-380071100.00%13316.9201109000020045.95%3700000.5900000000
14Ryan GroppCondors (Edm)LW210110011111100.00%03216.0900002000071042.86%700000.6200000000
15Mitchell StephensCondors (Edm)C2000-100110130.00%02914.9700001000070028.57%2100000.0000000000
16Mitchell Vande SompelCondors (Edm)D2000-260310000.00%03417.060000500004000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne130323870-48253152912283541092489.04%119209316.109122112132600011941041.84%19600000.6700102466
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Steve MichalekCondors (Edm)21100.7844.62104208370000.000020000
2John MuseCondors (Edm)10001.0000.0015000100000.000002000
Stats d'équipe Total ou en Moyenne31100.8304.00120208470000.000022000


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Adam GilmourCondors (Edm)LW221994-01-29Yes192 Lbs6 ft4NoNoNo3Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$
Alex SchoenbornCondors (Edm)RW211995-12-12Yes196 Lbs6 ft1NoNoNo3Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$
Andrei MarkovCondors (Edm)D381978-12-19No197 Lbs6 ft0NoNoNo1Sans RestrictionPro & Farm800,000$0$0$No
Bryan BickellCondors (Edm)RW301986-03-09No223 Lbs6 ft4NoNoNo1Sans RestrictionPro & Farm300,000$0$0$No
C.J. SmithCondors (Edm)LW221994-12-01Yes181 Lbs5 ft11NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Carter BancksCondors (Edm)LW271989-08-09No181 Lbs5 ft11NoNoNo3Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$
Evan CowleyCondors (Edm)G211995-07-31Yes201 Lbs6 ft4NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Jacob MacDonaldCondors (Edm)D231993-02-26Yes201 Lbs6 ft0NoNoNo3Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$
Jake CheliosCondors (Edm)D251991-03-08No188 Lbs6 ft2NoNoNo3Avec RestrictionPro & Farm500,000$0$0$No500,000$500,000$
Jake DowellCondors (Edm)C311985-03-04No200 Lbs6 ft0NoNoNo2Sans RestrictionPro & Farm500,000$0$0$No500,000$
Jeff ZatkoffCondors (Edm)G291987-06-09No179 Lbs6 ft2NoNoNo4Sans RestrictionPro & Farm500,000$0$0$No500,000$500,000$500,000$
John MuseCondors (Edm)G281988-08-01No185 Lbs5 ft11NoNoNo1Sans RestrictionPro & Farm500,000$0$0$No
Matheson IacopelliCondors (Edm)C221994-05-15Yes207 Lbs6 ft2NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Mitchell StephensCondors (Edm)C191997-02-05Yes196 Lbs6 ft0NoNoNo4Contrat d'EntréePro & Farm500,000$0$0$No500,000$500,000$500,000$
Mitchell Vande SompelCondors (Edm)D191997-02-11Yes190 Lbs5 ft10NoNoNo4Contrat d'EntréePro & Farm500,000$0$0$No500,000$500,000$500,000$
Parker WotherspoonCondors (Edm)D191997-08-24Yes172 Lbs6 ft0NoNoNo4Contrat d'EntréePro & Farm500,000$0$0$No500,000$500,000$500,000$
Petter GranbergCondors (Edm)D241992-08-26No200 Lbs6 ft3NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Ryan GroppCondors (Edm)LW201996-09-16Yes194 Lbs6 ft2NoNoNo4Contrat d'EntréePro & Farm500,000$0$0$No500,000$500,000$500,000$
Steve MichalekCondors (Edm)G231993-08-05No197 Lbs6 ft3NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Trevor CarrickCondors (Edm)D221994-07-03No186 Lbs6 ft2NoNoNo1Contrat d'EntréePro & Farm300,000$0$0$No
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2024.25193 Lbs6 ft12.80405,000$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1C.J. SmithJake DowellAlex Schoenborn40122
2Carter BancksMatheson IacopelliBryan Bickell30122
3Ryan GroppMitchell StephensC.J. Smith20122
4Adam GilmourAlex SchoenbornCarter Bancks10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jacob MacDonaldJake Chelios40122
2Andrei MarkovParker Wotherspoon30122
3Mitchell Vande SompelTrevor Carrick20122
4Petter GranbergJacob MacDonald10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1C.J. SmithJake DowellAlex Schoenborn60122
2Carter BancksMatheson IacopelliBryan Bickell40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jacob MacDonaldJake Chelios60122
2Andrei MarkovParker Wotherspoon40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1C.J. SmithAlex Schoenborn60122
2Carter BancksJake Dowell40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jacob MacDonaldJake Chelios60122
2Andrei MarkovParker Wotherspoon40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1C.J. Smith60122Jacob MacDonaldJake Chelios60122
2Alex Schoenborn40122Andrei MarkovParker Wotherspoon40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1C.J. SmithAlex Schoenborn60122
2Carter BancksJake Dowell40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Jacob MacDonaldJake Chelios60122
2Andrei MarkovParker Wotherspoon40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
C.J. SmithJake DowellAlex SchoenbornJacob MacDonaldJake Chelios
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
C.J. SmithJake DowellAlex SchoenbornJacob MacDonaldJake Chelios
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Ryan Gropp, Adam Gilmour, Mitchell StephensRyan Gropp, Adam GilmourMitchell Stephens
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Mitchell Vande Sompel, Trevor Carrick, Petter GranbergMitchell Vande SompelTrevor Carrick, Petter Granberg
Tirs de Pénalité
C.J. Smith, Alex Schoenborn, Carter Bancks, Jake Dowell, Matheson Iacopelli
Gardien
#1 : Steve Michalek, #2 : John Muse


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Barracuda413000001017-72110000058-32020000059-420.2501018280020168078185202195211229946128310.71%35585.71%020259334.06%17960129.78%9631730.28%442312589150233104
2Eagles2020000049-52020000049-50000000000000.0004610002016803918520219526223224810220.00%11281.82%020259334.06%17960129.78%9631730.28%442312589150233104
3Gulls20200000210-80000000000020200000210-800.0002240020168032185202195268242027500.00%10370.00%020259334.06%17960129.78%9631730.28%442312589150233104
4Heat30300000613-720200000410-61010000023-100.0006814002016806918520219529229444024312.50%21576.19%020259334.06%17960129.78%9631730.28%442312589150233104
5Moose2200000011652200000011650000000000041.000112031002016801081852021952872512467114.29%60100.00%020259334.06%17960129.78%9631730.28%442312589150233104
6Rampage1010000014-31010000014-30000000000000.0001230020168027185202195230814217114.29%6183.33%020259334.06%17960129.78%9631730.28%442312589150233104
7Reign2000020068-21000010034-11000010034-120.50061117002016801091852021952661927549111.11%80100.00%020259334.06%17960129.78%9631730.28%442312589150233104
8Roadrunners2020000014-32020000014-30000000000000.0001120020168052185202195255223043800.00%12191.67%020259334.06%17960129.78%9631730.28%442312589150233104
9Stars1010000024-21010000024-20000000000000.00023500201680281852021952241012159222.22%5260.00%020259334.06%17960129.78%9631730.28%442312589150233104
Total21316002004484-401339001003149-18807001001335-2280.19044721160020168058418520219526502103104041191310.92%1232282.11%020259334.06%17960129.78%9631730.28%442312589150233104
11Wild2020000019-8000000000002020000019-800.00011200201680421852021952542135491200.00%9366.67%020259334.06%17960129.78%9631730.28%442312589150233104
_Since Last GM Reset21316002004484-401339001003149-18807001001335-2280.19044721160020168058418520219526502103104041191310.92%1232282.11%020259334.06%17960129.78%9631730.28%442312589150233104
_Vs Conference909000001439-25606000001127-1630300000312-900.0001420340020168020518520219522629112717362812.90%521375.00%020259334.06%17960129.78%9631730.28%442312589150233104

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
218L1447211658465021031040400
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
2131602004484
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
133901003149
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
80701001335
Derniers 10 Matchs
WLOTWOTL SOWSOL
350200
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1191310.92%1232282.11%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
1852021952201680
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
20259334.06%17960129.78%9631730.28%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
442312589150233104


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2018-09-078Heat5Condors2LSommaire du Match
4 - 2018-09-0822Barracuda4Condors0LSommaire du Match
8 - 2018-09-1231Condors3Barracuda5LSommaire du Match
11 - 2018-09-1557Roadrunners2Condors1LSommaire du Match
18 - 2018-09-2294Condors1Gulls4LSommaire du Match
25 - 2018-09-29129Heat5Condors2LSommaire du Match
29 - 2018-10-03138Condors2Heat3LSommaire du Match
32 - 2018-10-06166Stars4Condors2LSommaire du Match
33 - 2018-10-07171Rampage4Condors1LSommaire du Match
37 - 2018-10-11179Condors1Wild3LSommaire du Match
39 - 2018-10-13202Condors0Wild6LSommaire du Match
45 - 2018-10-19233Condors1Gulls6LSommaire du Match
46 - 2018-10-20248Eagles5Condors1LSommaire du Match
49 - 2018-10-23256Eagles4Condors3LSommaire du Match
52 - 2018-10-26275Condors3Reign4LXSommaire du Match
53 - 2018-10-27289Roadrunners2Condors0LSommaire du Match
58 - 2018-11-01307Reign4Condors3LXSommaire du Match
60 - 2018-11-03331Moose1Condors4WSommaire du Match
64 - 2018-11-07347Moose5Condors7WSommaire du Match
67 - 2018-11-10376Barracuda4Condors5WSommaire du Match
68 - 2018-11-11380Condors2Barracuda4LSommaire du Match
73 - 2018-11-16400Gulls-Condors-
74 - 2018-11-17413Condors-Heat-
78 - 2018-11-21433Condors-Heat-
80 - 2018-11-23446Condors-Eagles-
81 - 2018-11-24463Condors-Eagles-
86 - 2018-11-29475Condors-Gulls-
88 - 2018-12-01498Gulls-Condors-
90 - 2018-12-03510Condors-Reign-
92 - 2018-12-05517Gulls-Condors-
94 - 2018-12-07528Eagles-Condors-
95 - 2018-12-08544Roadrunners-Condors-
99 - 2018-12-12557Condors-Stars-
101 - 2018-12-14572Condors-Eagles-
102 - 2018-12-15587Condors-Eagles-
106 - 2018-12-19603Heat-Condors-
108 - 2018-12-21615Heat-Condors-
109 - 2018-12-22630Condors-Gulls-
111 - 2018-12-24643Condors-Barracuda-
113 - 2018-12-26652Eagles-Condors-
115 - 2018-12-28666Condors-Roadrunners-
116 - 2018-12-29669Condors-Roadrunners-
122 - 2019-01-04694Wild-Condors-
123 - 2019-01-05708Condors-Reign-
129 - 2019-01-11732Barracuda-Condors-
130 - 2019-01-12747Gulls-Condors-
134 - 2019-01-16768Heat-Condors-
136 - 2019-01-18778Condors-Reign-
137 - 2019-01-19792Reign-Condors-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
144 - 2019-01-26838Condors-Roadrunners-
146 - 2019-01-28846Condors-Roadrunners-
150 - 2019-02-01865Wild-Condors-
151 - 2019-02-02881Barracuda-Condors-
155 - 2019-02-06895Condors-Barracuda-
157 - 2019-02-08909Condors-Heat-
158 - 2019-02-09920Condors-Barracuda-
162 - 2019-02-13942Gulls-Condors-
165 - 2019-02-16966Reign-Condors-
171 - 2019-02-22993Condors-Reign-
176 - 2019-02-271025Reign-Condors-
178 - 2019-03-011036Condors-Gulls-
179 - 2019-03-021051Barracuda-Condors-
182 - 2019-03-051061Condors-Moose-
183 - 2019-03-061068Condors-Moose-
186 - 2019-03-091096Condors-Rampage-
190 - 2019-03-131111Roadrunners-Condors-
193 - 2019-03-161140Reign-Condors-
194 - 2019-03-171150Condors-Heat-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
21 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
68,387$ 81,000$ 43,880$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 31,306$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 122 933$ 113,826$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1321316002004484-401339001003149-18807001001335-22844721160020168058418520219526502103104041191310.92%1232282.11%020259334.06%17960129.78%9631730.28%442312589150233104
Total Saison Régulière21316002004484-401339001003149-18807001001335-22844721160020168058418520219526502103104041191310.92%1232282.11%020259334.06%17960129.78%9631730.28%442312589150233104
Séries
12624000001622-631200000811-331200000811-341629452062711354938462158488610330516.67%34585.29%06616440.24%6015738.22%319931.31%12986164467435
12624000001622-631200000811-331200000811-341629452062711354938462158488610330516.67%34585.29%06616440.24%6015738.22%319931.31%12986164467435
Total Séries1248000003244-12624000001622-6624000001622-6832589040124142270987692431696172206601016.67%681085.29%013232840.24%12031438.22%6219831.31%2581723289314970