Wild

GP: 3 | W: 3 | L: 0 | OTL: 0 | P: 6
GF: 17 | GA: 4 | PP%: 33.33% | PK%: 100.00%
DG: Kevin Bourassa | Morale : 54 | Moyenne d'Équipe : N/A
Prochain matchs #78 vs Stars
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Nicholas BaptisteXX100.0065557677757285685061656455605915900
2Brendan RanfordX100.0056555555575858555055555555727414500
3Christoph BertschyX100.0065556555676271555055555555727214700
4Andreas JohnssonX100.0060556776666269625059606055657115200
5Lucas WallmarkX100.0066557376666269645060616155505015800
6Dominic MooreX100.0073557476727772728466677055888316200
7Mike RibeiroX100.0060557675797582635060606555918014800
8Nikita ScherbakX100.0064557676676269665062636055505015600
9Steve BernierX100.0084556066797570625060606055727315800
10Phil VaroneX100.0068557677676271605060606055505015600
11Gemel SmithXXX100.0078557382767579707164677055717115100
12Brenden KichtonX100.0055555960595968592559595955535315500
13Darren DietzX100.0059555560555567552555555555535315500
14Joakim RyanX100.0073559868638070852566637855737316100
15Zach RedmondX100.0062556173757558622560606155616116100
16Victor Mete (R)X100.0066559995557855772564607455767515900
17Maxime Lajoie (R)X100.0055555560555566552555555555555515400
18Stepan Falkovsky (R)X100.0055555560555553552555555555555515800
19Ludwig BystromX100.0056555560555566552555555555535315200
Rayé
1Peter Mueller (R)X100.0055555555555555555055555555666615400
2Adam Brooks (R)X100.0056555555585960555055555555505015700
3Mackenzie MacEachern (R)X100.0056555555555555555055555555505015300
4Rinat ValievX100.0055555560555566552555555555535316100
5Ben MarshallX100.0055555660565659562556565655535315100
MOYENNE D'ÉQUIPE100.006255666763646662425959605562621550
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Anders Nilsson100.007371607686768479768655747015500
2Parker Milner100.006263577069696665686655646515900
Rayé
1Kent Simpson100.005779696566666767626455606315400
MOYENNE D'ÉQUIPE100.00647162707470727069725566661560
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Kirk Muller61807162807071CAN5032,675,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Lucas WallmarkWild (Min)C332552046103530.00%03712.5900010000000065.85%4100002.6500000020
2Nikita ScherbakWild (Min)RW31456403333633.33%13913.0600001000000050.00%200002.5500000100
3Victor MeteWild (Min)D3325240121131127.27%26020.2231491600009000.00%000001.6500000002
4Phil VaroneWild (Min)C323500034721128.57%05618.78134214000001061.67%6000001.7700000100
5Gemel SmithWild (Min)C/LW/RW3224140621531013.33%17123.95011317000090044.44%900001.1100000001
6Nicholas BaptisteWild (Min)C/RW3033-100158480.00%06622.31011016000060075.00%800000.9000000010
7Brenden KichtonWild (Min)D3033200321230.00%13110.340000000001000.00%000001.9300000000
8Andreas JohnssonWild (Min)LW3033000166560.00%06020.18022014000040066.67%300000.9900000000
9Joakim RyanWild (Min)D33030204291433.33%36822.8430381500009200.00%000000.8800000000
10Dominic MooreWild (Min)C31235202414697.14%07625.36000115000090084.06%6900000.7900000000
11Gustav ForslingMinnesota WildD30330003092110.00%66923.27022315000010000.00%000000.8600000000
12Maxime LajoieWild (Min)D3022220303000.00%0175.930000000000000.00%000002.2500000000
13Darren DietzWild (Min)D31012003040025.00%1299.960000000000000.00%000000.6700000000
14Adam BrooksWild (Min)C31010001220150.00%03712.4000000000060065.52%2900000.5400000100
15Rinat ValievWild (Min)D3000000000000.00%020.930000000002000.00%000000.0000000000
16Steve BernierWild (Min)RW30000601114230.00%06220.910001140000300100.00%100000.0000000000
17Zach RedmondWild (Min)D3000295603350.00%25819.5300011500008000.00%000000.0000001000
18Stepan FalkovskyWild (Min)D3000000000000.00%031.200000000000000.00%000000.0000000000
19Ludwig BystromWild (Min)D3000220303000.00%1175.930000000000000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne57172946283755839112399315.18%1886915.2571017291580000803069.82%22200001.0600001333
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Parker MilnerWild (Min)33000.9301.33180004570000.000030000
Stats d'équipe Total ou en Moyenne33000.9301.33180004570000.000030000


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Adam BrooksWild (Min)C181998-05-06Yes176 Lbs5 ft11NoNoNo4Contrat d'EntréePro & Farm500,000$0$0$No500,000$500,000$500,000$
Anders NilssonWild (Min)G261990-03-19No227 Lbs6 ft5NoNoNo1Avec RestrictionPro & Farm2,500,000$0$0$No
Andreas JohnssonWild (Min)LW221994-11-20No181 Lbs5 ft10NoNoNo3Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$
Ben MarshallWild (Min)D241992-08-30No161 Lbs5 ft9NoNoNo3Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$
Brendan RanfordWild (Min)LW241992-05-02No190 Lbs5 ft11NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Brenden KichtonWild (Min)D241992-06-17No185 Lbs5 ft10NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Christoph BertschyWild (Min)C221994-04-05No189 Lbs5 ft10NoNoNo2Contrat d'EntréePro & Farm300,000$0$0$No300,000$
Darren DietzWild (Min)D231993-07-17No204 Lbs6 ft1NoNoNo3Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$
Dominic MooreWild (Min)C361980-08-03No192 Lbs6 ft0NoNoNo2Sans RestrictionPro & Farm500,000$0$0$No500,000$
Gemel SmithWild (Min)C/LW/RW221994-04-16No200 Lbs5 ft10NoNoNo1Contrat d'EntréePro & Farm300,000$0$0$No
Joakim RyanWild (Min)D231993-06-17No185 Lbs5 ft11NoNoNo2Avec RestrictionPro & Farm500,000$0$0$No500,000$
Kent SimpsonWild (Min)G241992-03-26No198 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Lucas WallmarkWild (Min)C211995-09-05No176 Lbs6 ft0NoNoNo3Contrat d'EntréePro & Farm500,000$0$0$No500,000$500,000$
Ludwig BystromWild (Min)D221994-07-20No174 Lbs6 ft0NoNoNo1Contrat d'EntréePro & Farm500,000$0$0$No
Mackenzie MacEachernWild (Min)LW221994-03-09Yes190 Lbs6 ft2NoNoNo3Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$
Maxime LajoieWild (Min)D191997-11-05Yes181 Lbs6 ft0NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Mike RibeiroWild (Min)C361980-02-09No177 Lbs6 ft0NoNoNo4Sans RestrictionPro & Farm300,000$0$0$No300,000$300,000$300,000$
Nicholas BaptisteWild (Min)C/RW211995-08-04No203 Lbs6 ft1NoNoNo2Contrat d'EntréePro & Farm500,000$0$0$No500,000$
Nikita ScherbakWild (Min)RW211995-12-30No175 Lbs6 ft1NoNoNo2Contrat d'EntréePro & Farm900,000$0$0$No900,000$
Parker MilnerWild (Min)G261990-09-06No196 Lbs6 ft1NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Peter MuellerWild (Min)C281988-04-13Yes204 Lbs6 ft2NoNoNo4Sans RestrictionPro & Farm500,000$0$0$No500,000$500,000$500,000$
Phil VaroneWild (Min)C261990-12-03No185 Lbs5 ft10NoNoNo1Avec RestrictionPro & Farm500,000$0$0$No
Rinat ValievWild (Min)D211995-05-11No205 Lbs6 ft2NoNoNo2Contrat d'EntréePro & Farm500,000$0$0$No500,000$
Stepan FalkovskyWild (Min)D201996-12-18Yes225 Lbs6 ft7NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Steve BernierWild (Min)RW311985-03-30No215 Lbs6 ft3NoNoNo1Sans RestrictionPro & Farm500,000$0$0$No
Victor MeteWild (Min)D181998-06-07Yes181 Lbs5 ft10NoNoNo4Contrat d'EntréePro & Farm500,000$0$0$No500,000$500,000$500,000$
Zach RedmondWild (Min)D281988-07-25No205 Lbs6 ft2NoNoNo3Sans RestrictionPro & Farm500,000$0$0$No500,000$500,000$
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2724.00192 Lbs6 ft02.44492,593$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Gemel SmithDominic MooreNicholas Baptiste40122
2Andreas JohnssonPhil VaroneSteve Bernier30122
3Dominic MooreLucas WallmarkNikita Scherbak20122
4Gemel SmithNicholas Baptiste10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Joakim Ryan40122
2Victor MeteZach Redmond30122
3Brenden KichtonDarren Dietz20122
4Maxime LajoieLudwig Bystrom10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Gemel SmithDominic MooreNicholas Baptiste60122
2Andreas JohnssonPhil VaroneSteve Bernier40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Joakim Ryan60122
2Victor MeteZach Redmond40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Dominic MooreGemel Smith60122
2Nicholas BaptisteSteve Bernier40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Joakim Ryan60122
2Victor MeteZach Redmond40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Dominic Moore60122Joakim Ryan60122
2Gemel Smith40122Victor MeteZach Redmond40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Dominic MooreGemel Smith60122
2Nicholas BaptisteSteve Bernier40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Joakim Ryan60122
2Victor MeteZach Redmond40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Gemel SmithDominic MooreNicholas BaptisteJoakim Ryan
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Gemel SmithDominic MooreNicholas BaptisteJoakim Ryan
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Nikita Scherbak, Lucas Wallmark, Nikita Scherbak, Lucas Wallmark
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Stepan Falkovsky, , Brenden KichtonStepan Falkovsky, Brenden Kichton
Tirs de Pénalité
Dominic Moore, Gemel Smith, Nicholas Baptiste, Steve Bernier, Andreas Johnsson
Gardien
#1 : Parker Milner, #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Moose220000001431122000000143110000000000041.000142337009530843940330388183612541.67%70100.00%07710771.96%446963.77%344673.91%1048142163220
2Stars11000000312110000003120000000000021.000369009530283940330191019229222.22%60100.00%07710771.96%446963.77%344673.91%1048142163220
Total330000001741333000000174130000000000061.00017294600953011239403305718375821733.33%130100.00%07710771.96%446963.77%344673.91%1048142163220
_Since Last GM Reset330000001741333000000174130000000000061.00017294600953011239403305718375821733.33%130100.00%07710771.96%446963.77%344673.91%1048142163220
_Vs Conference11000000312110000003120000000000021.000369009530283940330191019229222.22%60100.00%07710771.96%446963.77%344673.91%1048142163220

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
36W31729461125718375800
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
3300000174
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
3300000174
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
000000000
Derniers 10 Matchs
WLOTWOTL SOWSOL
300000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
21733.33%130100.00%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
39403309530
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
7710771.96%446963.77%344673.91%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
1048142163220


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2018-09-076Moose2Wild7WSommaire du Match
5 - 2018-09-0925Moose1Wild7WSommaire du Match
10 - 2018-09-1439Stars1Wild3WSommaire du Match
17 - 2018-09-2178Wild-Stars-
18 - 2018-09-2291Wild-Stars-
24 - 2018-09-28114Eagles-Wild-
25 - 2018-09-29128Eagles-Wild-
31 - 2018-10-05142Wild-Griffins-
32 - 2018-10-06160Wild-IceHogs-
33 - 2018-10-07170IceHogs-Wild-
36 - 2018-10-10175Wild-IceHogs-
37 - 2018-10-11179Condors-Wild-
39 - 2018-10-13202Condors-Wild-
43 - 2018-10-17221Admirals-Wild-
45 - 2018-10-19232Admirals-Wild-
46 - 2018-10-20246Wild-Wolves-
50 - 2018-10-24261Wild-Admirals-
52 - 2018-10-26271Wild-Moose-
53 - 2018-10-27277Wild-Moose-
55 - 2018-10-29298Griffins-Wild-
59 - 2018-11-02315Wild-Eagles-
60 - 2018-11-03330Wild-Eagles-
64 - 2018-11-07346Wolves-Wild-
66 - 2018-11-09358Wolves-Wild-
67 - 2018-11-10372Griffins-Wild-
71 - 2018-11-14388Wild-Stars-
73 - 2018-11-16399Wild-Rampage-
75 - 2018-11-18418Wild-Rampage-
80 - 2018-11-23445Heat-Wild-
81 - 2018-11-24461Heat-Wild-
85 - 2018-11-28466IceHogs-Wild-
88 - 2018-12-01493Admirals-Wild-
90 - 2018-12-03505Wolves-Wild-
92 - 2018-12-05514Wild-Wolves-
94 - 2018-12-07527IceHogs-Wild-
96 - 2018-12-09550Wild-IceHogs-
99 - 2018-12-12556Wild-Rampage-
101 - 2018-12-14570Wild-Rampage-
102 - 2018-12-15583Wild-Stars-
104 - 2018-12-17593Gulls-Wild-
108 - 2018-12-21612Reign-Wild-
109 - 2018-12-22623Reign-Wild-
111 - 2018-12-24637IceHogs-Wild-
115 - 2018-12-28662Wild-Admirals-
116 - 2018-12-29676Wild-IceHogs-
122 - 2019-01-04694Wild-Condors-
123 - 2019-01-05710Wild-Gulls-
126 - 2019-01-08715Wild-Barracuda-
129 - 2019-01-11729Rampage-Wild-
130 - 2019-01-12743Rampage-Wild-
137 - 2019-01-19785Wild-IceHogs-
138 - 2019-01-20798Wild-Wolves-
140 - 2019-01-22807Stars-Wild-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
142 - 2019-01-24815Barracuda-Wild-
143 - 2019-01-25826Barracuda-Wild-
147 - 2019-01-29849Wild-Barracuda-
150 - 2019-02-01865Wild-Condors-
151 - 2019-02-02878Wild-Reign-
152 - 2019-02-03887Wild-Reign-
157 - 2019-02-08900Wild-Griffins-
158 - 2019-02-09918Wild-Wolves-
161 - 2019-02-12932Rampage-Wild-
164 - 2019-02-15952Rampage-Wild-
168 - 2019-02-19976Wild-Roadrunners-
169 - 2019-02-20983Wild-Roadrunners-
171 - 2019-02-22992Wild-Heat-
173 - 2019-02-241015Wild-Heat-
175 - 2019-02-261017Griffins-Wild-
178 - 2019-03-011034Stars-Wild-
179 - 2019-03-021046Stars-Wild-
182 - 2019-03-051062Roadrunners-Wild-
183 - 2019-03-061069Roadrunners-Wild-
186 - 2019-03-091091Wild-Admirals-
190 - 2019-03-131109Wild-Griffins-
192 - 2019-03-151123Wolves-Wild-
193 - 2019-03-161132IceHogs-Wild-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
35 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
188,345$ 133,000$ 104,130$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 9,089$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 181 14,474$ 2,619,794$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
133300000017413330000001741300000000000617294600953011239403305718375821733.33%130100.00%07710771.96%446963.77%344673.91%1048142163220
Total Saison Régulière3300000017413330000001741300000000000617294600953011239403305718375821733.33%130100.00%07710771.96%446963.77%344673.91%1048142163220