Thunderbirds

GP: 4 | W: 0 | L: 4 | OTL: 0 | P: 0
GF: 8 | GA: 21 | PP%: 10.53% | PK%: 77.78%
DG: Yannick Ferland | Morale : 47 | Moyenne d'Équipe : N/A
Prochain matchs #76 vs Rocket
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Anthony PelusoX100.0058556665828054555055556055717415100
2Ben HolmstromX100.0061556560777072555055555955747514800
3Brendan WoodsX99.0067555866807865555055555555697414800
4Trevor Smith (R)X99.0076557268746871615063646255575714800
5Mason Appleton (R)X100.0074556955756672555055555555505015100
6Jamie DevaneX100.0065555868807868555055555655505015100
7Jens Looke (R)X100.0056555555555756555055555555505015100
8Adam ChapieX100.0081556663746754555055555555505015100
9John MitchellX100.0056555555555655555055555555727215100
10Mark ZengerleX100.0056555555555555555055555555505015100
11Reid PetrykX99.0056555555555555555055555555505014800
12Andrew BodnarchukX100.0055555660565667562556565655535315100
13Chris CastoX100.0055555560555567552555555555535315100
14Zach Trotman (R)X100.0055555560555574552555555555555515100
Rayé
MOYENNE D'ÉQUIPE99.796255606066646356455656565557581500
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Adam Carlson (R)100.005249617053525257535355505515100
2Zane McIntyre100.007775777679798076767655706815000
Rayé
MOYENNE D'ÉQUIPE100.00656269736666666765655560621510
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Alain Nasreddine52806849666263CAN4051,000,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brendan WoodsThunderbirds (Flo)C4044-44061713890.00%38421.16000612000060025.00%400000.9500000001
2Ben HolmstromThunderbirds (Flo)C4303-30069131623.08%36215.6110115000000046.30%5400000.9600000000
3Trevor SmithThunderbirds (Flo)C4213-5405161791211.76%38421.1700049000090040.96%8300000.7100000010
4Chris CastoThunderbirds (Flo)D4213-315514685325.00%67318.4701131000005000.00%000000.8100100000
5Reid PetrykThunderbirds (Flo)C4011-46078111120.00%77919.9501131600003000.00%500000.2500000000
6Steven KampferFlorida PanthersD1000000410010.00%12222.550000200003000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne217714-19295425762244311.29%2340719.4312317570000280041.10%14600000.6900100011
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Stats d'équipe Total ou en Moyenne0.0000.0000.000


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Adam CarlsonThunderbirds (Flo)G221994-02-13Yes174 Lbs6 ft3NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Adam ChapieThunderbirds (Flo)RW251991-07-05No185 Lbs6 ft1NoNoNo4Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$300,000$
Andrew BodnarchukThunderbirds (Flo)D281988-07-10No189 Lbs5 ft10NoNoNo1Sans RestrictionPro & Farm300,000$0$0$No
Anthony PelusoThunderbirds (Flo)RW271989-04-17No235 Lbs6 ft3NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Ben HolmstromThunderbirds (Flo)C291987-04-08No197 Lbs6 ft1NoNoNo1Sans RestrictionPro & Farm300,000$0$0$No
Brendan WoodsThunderbirds (Flo)C241992-06-10No209 Lbs6 ft4NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Chris CastoThunderbirds (Flo)D251991-12-27No209 Lbs6 ft2NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Jamie DevaneThunderbirds (Flo)LW251991-02-20No231 Lbs6 ft5NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Jens LookeThunderbirds (Flo)RW191997-04-11Yes181 Lbs6 ft1NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
John MitchellThunderbirds (Flo)C311985-01-22No204 Lbs6 ft1NoNoNo4Sans RestrictionPro & Farm300,000$0$0$No300,000$300,000$300,000$
Mark ZengerleThunderbirds (Flo)C271989-05-12No185 Lbs5 ft10NoNoNo3Avec RestrictionPro & Farm300,000$0$0$No300,000$300,000$
Mason AppletonThunderbirds (Flo)C201996-01-15Yes201 Lbs6 ft2NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$No300,000$300,000$300,000$
Reid PetrykThunderbirds (Flo)C231993-02-02No212 Lbs6 ft1NoNoNo1Avec RestrictionPro & Farm300,000$0$0$No
Trevor SmithThunderbirds (Flo)C311985-02-07Yes195 Lbs6 ft1NoNoNo3Sans RestrictionPro & Farm500,000$0$0$No500,000$500,000$
Zach TrotmanThunderbirds (Flo)D261990-08-25Yes216 Lbs6 ft3NoNoNo1Avec RestrictionPro & Farm500,000$0$0$No
Zane McIntyreThunderbirds (Flo)G241992-08-20No207 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm300,000$0$0$No300,000$
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1625.38202 Lbs6 ft22.31325,000$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Reid Petryk40122
2Trevor SmithBrendan Woods30122
3Brendan WoodsBen Holmstrom20122
4Trevor Smith10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Chris Casto40122
230122
3Chris Casto20122
4Reid Petryk10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Reid Petryk60122
2Trevor SmithBrendan Woods40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Chris Casto60122
240122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Trevor Smith60122
2Reid Petryk40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Chris Casto60122
240122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
160122Chris Casto60122
2Trevor Smith4012240122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Trevor Smith60122
2Reid Petryk40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Chris Casto60122
240122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Reid PetrykChris Casto
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Reid PetrykChris Casto
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Ben Holmstrom, , Brendan WoodsBen Holmstrom, Brendan Woods
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, Chris Casto, Chris Casto,
Tirs de Pénalité
, Trevor Smith, , Reid Petryk,
Gardien
#1 : , #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Bruins1010000037-41010000037-40000000000000.000369004400273525310371016204125.00%8362.50%03511131.53%3711532.17%215836.21%6646131294116
2Penguins1010000017-6000000000001010000017-600.000123004400183525310388820400.00%40100.00%03511131.53%3711532.17%215836.21%6646131294116
3Phantoms2020000047-31010000013-21010000034-100.000459004400463525310571517171119.09%6183.33%03511131.53%3711532.17%215836.21%6646131294116
Total40400000821-1320200000410-620200000411-700.0008132100440091352531013233415719210.53%18477.78%03511131.53%3711532.17%215836.21%6646131294116
_Since Last GM Reset40400000821-1320200000410-620200000411-700.0008132100440091352531013233415719210.53%18477.78%03511131.53%3711532.17%215836.21%6646131294116

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
40L4813219113233415700
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
4040000821
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
2020000410
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
2020000411
Derniers 10 Matchs
WLOTWOTL SOWSOL
040000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
19210.53%18477.78%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
35253104400
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
3511131.53%3711532.17%215836.21%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
6646131294116


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
4 - 2018-09-0814Thunderbirds1Penguins7LSommaire du Match
10 - 2018-09-1435Thunderbirds3Phantoms4LSommaire du Match
11 - 2018-09-1552Phantoms3Thunderbirds1LSommaire du Match
12 - 2018-09-1659Bruins7Thunderbirds3LSommaire du Match
17 - 2018-09-2176Thunderbirds-Rocket-
18 - 2018-09-2282Thunderbirds-Rocket-
25 - 2018-09-29123Bruins-Thunderbirds-
26 - 2018-09-30132Wolf Pack-Thunderbirds-
31 - 2018-10-05144Sound Tigers-Thunderbirds-
32 - 2018-10-06155Thunderbirds-Sound Tigers-
38 - 2018-10-12185Thunderbirds-Phantoms-
39 - 2018-10-13195Thunderbirds-Bears-
43 - 2018-10-17214Penguins-Thunderbirds-
45 - 2018-10-19229Americans-Thunderbirds-
46 - 2018-10-20244Phantoms-Thunderbirds-
52 - 2018-10-26269Penguins-Thunderbirds-
53 - 2018-10-27283Crunch-Thunderbirds-
54 - 2018-10-28291Thunderbirds-Sound Tigers-
57 - 2018-10-31303Sound Tigers-Thunderbirds-
60 - 2018-11-03323Thunderbirds-Bears-
61 - 2018-11-04333Sound Tigers-Thunderbirds-
66 - 2018-11-09349Thunderbirds-Comets-
67 - 2018-11-10368Checkers-Thunderbirds-
68 - 2018-11-11377Devils-Thunderbirds-
71 - 2018-11-14385Penguins-Thunderbirds-
74 - 2018-11-17403Thunderbirds-Sound Tigers-
75 - 2018-11-18417Bears-Thunderbirds-
78 - 2018-11-21429Crunch-Thunderbirds-
80 - 2018-11-23440Comets-Thunderbirds-
81 - 2018-11-24459Bruins-Thunderbirds-
87 - 2018-11-30480Sound Tigers-Thunderbirds-
88 - 2018-12-01489Thunderbirds-Crunch-
89 - 2018-12-02499Thunderbirds-Wolf Pack-
94 - 2018-12-07523Thunderbirds-Wolf Pack-
95 - 2018-12-08537Bruins-Thunderbirds-
96 - 2018-12-09547Phantoms-Thunderbirds-
101 - 2018-12-14566Bears-Thunderbirds-
102 - 2018-12-15581Bruins-Thunderbirds-
103 - 2018-12-16588Thunderbirds-Bruins-
106 - 2018-12-19597Thunderbirds-Phantoms-
108 - 2018-12-21607Thunderbirds-Bruins-
109 - 2018-12-22619Thunderbirds-Wolf Pack-
111 - 2018-12-24639Rocket-Thunderbirds-
113 - 2018-12-26646Thunderbirds-Wolf Pack-
115 - 2018-12-28655Thunderbirds-Crunch-
116 - 2018-12-29678Thunderbirds-Bruins-
122 - 2019-01-04687Wolf Pack-Thunderbirds-
123 - 2019-01-05704Comets-Thunderbirds-
127 - 2019-01-09718Bears-Thunderbirds-
129 - 2019-01-11725Thunderbirds-Americans-
130 - 2019-01-12735Thunderbirds-Marlies-
136 - 2019-01-18772Checkers-Thunderbirds-
137 - 2019-01-19788Marlies-Thunderbirds-
138 - 2019-01-20796Thunderbirds-Bruins-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
143 - 2019-01-25824Thunderbirds-Wolf Pack-
144 - 2019-01-26831Thunderbirds-Sound Tigers-
150 - 2019-02-01862Wolf Pack-Thunderbirds-
151 - 2019-02-02874Bruins-Thunderbirds-
152 - 2019-02-03882Thunderbirds-Bruins-
157 - 2019-02-08905Thunderbirds-Devils-
158 - 2019-02-09914Wolf Pack-Thunderbirds-
159 - 2019-02-10925Thunderbirds-Bruins-
162 - 2019-02-13935Thunderbirds-Bears-
164 - 2019-02-15944Thunderbirds-Comets-
166 - 2019-02-17969Thunderbirds-Sound Tigers-
171 - 2019-02-22987Devils-Thunderbirds-
172 - 2019-02-231001Rocket-Thunderbirds-
173 - 2019-02-241010Thunderbirds-Penguins-
178 - 2019-03-011031Thunderbirds-Devils-
179 - 2019-03-021047Thunderbirds-Penguins-
183 - 2019-03-061065Wolf Pack-Thunderbirds-
186 - 2019-03-091086Thunderbirds-Checkers-
187 - 2019-03-101097Thunderbirds-Checkers-
192 - 2019-03-151120Sound Tigers-Thunderbirds-
193 - 2019-03-161135Bruins-Thunderbirds-
194 - 2019-03-171143Thunderbirds-Bruins-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
36 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
70,574$ 52,000$ 40,250$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 3,562$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 181 5,423$ 981,563$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1340400000821-1320200000410-620200000411-708132100440091352531013233415719210.53%18477.78%03511131.53%3711532.17%215836.21%6646131294116
Total Saison Régulière40400000821-1320200000410-620200000411-708132100440091352531013233415719210.53%18477.78%03511131.53%3711532.17%215836.21%6646131294116