Stars

GP: 44 | W: 34 | L: 7 | OTL: 3 | P: 71
GF: 139 | GA: 61 | PP%: 18.72% | PK%: 90.48%
DG: Mickael Lajeunesse | Morale : 84 | Moyenne d'Équipe : 63
Prochain matchs #682 vs Griffins
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Dale WeiseXX100.008242807082737666566164656279725190660
2Peter HollandX100.006338846579949363706261646275687087650
3Devante Smith-PellyXX100.008341826379747061566264736573676347640
4T.J. HensickX100.005435956368787262736556575984745187620
5Nick LappinX100.005936926072846958585657595573674887600
6Nikita JevpalovsX100.006637875679939155575454565569656087600
7Nicholas MerkleyX100.005537876269868061706354565863627887600
8Zack MacEwenX100.006143845984777158625957595565635389600
9Isac Lundestrom (R)X100.005435936271746361726253645360628387600
10Stephen GiontaX100.005935936063726258675956645186763587600
11Linus Olund (R)X100.005735945571928854565352534963626338570
12Aaron LuchukX100.005035955657787255575453505463626328550
13Dylan McIlrathX100.007540795896856856305553724873677147660
14Chris BreenX100.008439835599878153305450614578705547650
15Philippe MyersX100.007839836391856861306258634863625487650
16Matt IrwinX100.008254796379695762306856645180722787640
17Kevin GravelX100.005636935989776358306153684972674687630
18Joe HickettsX100.005637885964897058305753684665635347620
19Timothy LiljegrenX100.006437896073857958305652615360628387620
Rayé
1Roope HintzX100.007438876886777267736665686764657263660
2Jonathan Dahlen (R)X100.005236926157918659635856526063627341590
3Nikita Popugaev (R)X100.007935945596767054565253615461636441590
4Cam Dineen (R)X100.005335945558918654305352515461637041570
MOYENNE D'ÉQUIPE100.00653888607782745952595661546966606962
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Josef Korenar100.00797573747877797877797861655387730
2Spencer Martin100.00757270857473757473757467715287720
Rayé
1Martin Ouellette (R)100.00776563697675777675777675814520720
2Felix Sandstrom (R)100.00746462797372747372747363677520690
3Stuart Skinner (R)100.00716563887069717069717061657620680
MOYENNE D'ÉQUIPE100.0075686679747375747375746570604771
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Scott Gordon81788481847863USA5641,000,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Dale WeiseStars (Dal)LW/RW44252247257210115631855412713.51%791620.8357124214800031606146.34%12300001.0315101773
2Isac LundestromStars (Dal)C44102535234097713226727.58%670115.95381126129000051163.93%90100001.0000000223
3Nick LappinStars (Dal)RW44171734252005636106337716.04%779218.011091949180000006163.64%5500010.8600000335
4Philippe MyersStars (Dal)D447202714801084457634589.21%3292320.9851015491590001139000.00%000000.5900100220
5Nicholas MerkleyStars (Dal)RW4461622813514828819496.82%967615.3847111312300061711058.37%67500000.6511001003
6Peter HollandStars (Dal)C4410112113180485079197612.66%1059713.5911262800011273062.15%39100000.7025000303
7Kevin GravelStars (Dal)D44315181422034301921515.79%3369315.76000050000147100.00%000000.5200000111
8Zack MacEwenStars (Dal)C4410818144515625596238210.42%1268415.55000000112592152.34%12800000.5300003230
9Matt IrwinStars (Dal)D44315181253577353115179.68%3264814.731238440001151200.00%000000.5600001122
10T.J. HensickStars (Dal)RW446111712241019386515419.23%24099.320115310000132069.23%2600000.8300100101
11Stephen GiontaStars (Dal)C4441216116017366611416.06%123718.45011319000002057.38%12200000.8600000010
12Roope HintzStars (Dal)LW157815522036335993911.86%028318.8704411431011380063.79%29000001.0602000032
13Timothy LiljegrenStars (Dal)D44212141214025254623394.35%3488020.02145301300110159000.00%000000.3200000021
14Nikita JevpalovsStars (Dal)RW4493128120523268204213.24%844010.0200000000000048.00%2500000.5400000320
15Jonathan DahlenStars (Dal)LW1544848071132112412.50%123915.99213644000001050.00%1400000.6701000002
16Dylan McIlrathStars (Dal)D71343204416246.25%313719.670001130000019100.00%000000.5800000001
17Devante Smith-PellyStars (Dal)LW/RW7202260129237218.70%011716.720007310001171046.15%2600000.3400000000
18Nikita PopugaevStars (Dal)LW151120140186174125.88%115110.1100002000070185.71%700000.2600000010
19Joe HickettsStars (Dal)D7011000834010.00%5649.2800000000010000.00%000000.3100000000
20Cam DineenStars (Dal)D151010000552720.00%317811.9210144400003100.00%000000.1100000000
21Chris BreenStars (Dal)D70001120514150.00%1416022.95000432000029000.00%000000.0000000000
22Aaron LuchukStars (Dal)C7000020131000.00%0213.10000000001210057.14%1400000.0000000000
23Linus OlundStars (Dal)C11000000123000.00%1474.3400024000050080.00%1000000.0000000000
Stats d'équipe Total ou en Moyenne67812820433220644955704681122133084910.48%2321014114.96335588276123612317128930560.49%280700010.65414306252927
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Josef KorenarStars (Dal)4434730.9361.33267028599280100.87516440633
Stats d'équipe Total ou en Moyenne4434730.9361.33267028599280100.87516440633


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Aaron LuchukStars (Dal)C221997-04-04No180 Lbs5 ft1NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Cam DineenStars (Dal)D211998-06-19Yes183 Lbs5 ft1NoNoNo4Pro & Farm500,000$0$0$No500,000$500,000$500,000$Lien
Chris BreenStars (Dal)D301989-06-29No226 Lbs6 ft7NoNoNo1Pro & Farm300,000$0$0$NoLien
Dale WeiseStars (Dal)LW/RW301988-08-05No206 Lbs6 ft2NoNoNo2Pro & Farm936,481$0$0$No936,481$Lien
Devante Smith-PellyStars (Dal)LW/RW271992-06-14No223 Lbs6 ft0NoNoNo1Pro & Farm1,000,000$0$0$NoLien
Dylan McIlrathStars (Dal)D271992-04-20No236 Lbs6 ft5NoNoNo4Pro & Farm963,777$0$0$No963,777$963,777$963,777$Lien
Felix SandstromStars (Dal)G221997-01-12Yes191 Lbs6 ft2NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Isac LundestromStars (Dal)C191999-11-06Yes187 Lbs6 ft0NoNoNo4Pro & Farm900,000$0$0$No900,000$900,000$900,000$Lien
Joe HickettsStars (Dal)D231996-05-04No180 Lbs5 ft8NoNoNo2Pro & Farm300,000$0$0$No300,000$Lien
Jonathan DahlenStars (Dal)LW211997-12-20Yes176 Lbs5 ft1NoNoNo4Pro & Farm900,000$0$0$No900,000$900,000$900,000$Lien
Josef KorenarStars (Dal)G211998-01-31No185 Lbs6 ft1NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Kevin GravelStars (Dal)D271992-03-06No211 Lbs6 ft4NoNoNo1Pro & Farm973,000$0$0$NoLien
Linus OlundStars (Dal)C221997-06-05Yes185 Lbs6 ft0NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Martin OuelletteStars (Dal)G271991-12-30Yes160 Lbs6 ft1NoNoNo1Pro & Farm500,000$0$0$NoLien
Matt IrwinStars (Dal)D311987-11-29No207 Lbs6 ft1NoNoNo1Pro & Farm1,000,000$0$0$NoLien
Nicholas MerkleyStars (Dal)RW221997-05-23No194 Lbs5 ft10NoNoNo3Pro & Farm900,000$0$0$No900,000$900,000$Lien
Nick LappinStars (Dal)RW261992-11-01No175 Lbs6 ft1NoNoNo2Pro & Farm300,000$0$0$No300,000$Lien
Nikita JevpalovsStars (Dal)RW241994-09-09No210 Lbs6 ft1NoNoNo1Pro & Farm300,000$0$0$NoLien
Nikita PopugaevStars (Dal)LW201998-11-20Yes217 Lbs6 ft6NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Peter HollandStars (Dal)C281991-01-14No193 Lbs6 ft2NoNoNo3Pro & Farm915,775$0$0$No915,775$915,775$Lien
Philippe MyersStars (Dal)D221997-01-25No210 Lbs6 ft5NoNoNo3Pro & Farm300,000$0$0$No300,000$300,000$Lien
Roope HintzStars (Dal)LW221996-11-17No215 Lbs6 ft3NoNoNo3Pro & Farm500,000$0$0$No500,000$500,000$Lien
Spencer MartinStars (Dal)G241995-06-08No210 Lbs6 ft3NoNoNo1Pro & Farm500,000$0$0$NoLien
Stephen GiontaStars (Dal)C351983-10-09No177 Lbs5 ft7NoNoNo1Pro & Farm300,000$0$0$NoLien
Stuart SkinnerStars (Dal)G201998-11-01Yes206 Lbs6 ft4NoNoNo4Pro & Farm500,000$0$0$No500,000$500,000$500,000$Lien
T.J. HensickStars (Dal)RW331985-12-10No190 Lbs5 ft10NoNoNo1Pro & Farm498,888$0$0$NoLien
Timothy LiljegrenStars (Dal)D201999-04-30No192 Lbs6 ft0NoNoNo4Pro & Farm900,000$0$0$No900,000$900,000$900,000$Lien
Zack MacEwenStars (Dal)C221996-07-08No205 Lbs6 ft3NoNoNo3Pro & Farm300,000$0$0$No300,000$300,000$Lien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2824.57198 Lbs6 ft02.64570,997$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Dale WeisePeter HollandDevante Smith-Pelly40122
2Nick LappinIsac LundestromT.J. Hensick30122
3Dale WeiseStephen GiontaNick Lappin20122
4Peter HollandZack MacEwenNikita Jevpalovs10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Philippe MyersChris Breen40122
2Dylan McIlrathMatt Irwin30122
3Kevin GravelJoe Hicketts20122
4Timothy LiljegrenPhilippe Myers10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Dale WeisePeter HollandDevante Smith-Pelly60122
2Nick LappinIsac LundestromT.J. Hensick40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Philippe MyersChris Breen60122
2Dylan McIlrathMatt Irwin40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Dale WeisePeter Holland60122
2Devante Smith-PellyT.J. Hensick40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Philippe MyersChris Breen60122
2Dylan McIlrathMatt Irwin40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Dale Weise60122Philippe MyersChris Breen60122
2Peter Holland40122Dylan McIlrathMatt Irwin40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Dale WeisePeter Holland60122
2Devante Smith-PellyT.J. Hensick40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Philippe MyersChris Breen60122
2Dylan McIlrathMatt Irwin40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Dale WeisePeter HollandDevante Smith-PellyPhilippe MyersChris Breen
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Dale WeisePeter HollandDevante Smith-PellyPhilippe MyersChris Breen
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Nicholas Merkley, Linus Olund, Aaron LuchukNicholas Merkley, Linus OlundAaron Luchuk
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Kevin Gravel, Joe Hicketts, Timothy LiljegrenKevin GravelJoe Hicketts, Timothy Liljegren
Tirs de Pénalité
Dale Weise, Peter Holland, Devante Smith-Pelly, T.J. Hensick, Nick Lappin
Gardien
#1 : Josef Korenar, #2 : Spencer Martin


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals52100101121203100010167-12110000065160.6001221330063422961304354424312713328619924625.00%28485.71%0805139157.87%682124454.82%34158558.29%1214890937300521272
2Barracuda20100010440100000103211010000012-120.50046100063422963343544243127431132349111.11%16193.75%0805139157.87%682124454.82%34158558.29%1214890937300521272
3Condors22000000826110000003121100000051441.000815230063422968243544243127411317338225.00%60100.00%0805139157.87%682124454.82%34158558.29%1214890937300521272
4Griffins330000001468110000006242200000084461.0001424380063422968643544243127481427519444.44%10370.00%1805139157.87%682124454.82%34158558.29%1214890937300521272
5Gulls22000000413110000002021100000021141.00048120163422965343544243127321331331417.14%120100.00%0805139157.87%682124454.82%34158558.29%1214890937300521272
6Heat22000000312110000002111100000010141.0003690163422967243544243127441183610220.00%40100.00%0805139157.87%682124454.82%34158558.29%1214890937300521272
7IceHogs44000000262242200000015114220000001111081.000264571026342296210435442431276816188021628.57%90100.00%0805139157.87%682124454.82%34158558.29%1214890937300521272
8Moose330000001431133000000143110000000000061.000142337006342296100435442431277022266210220.00%130100.00%0805139157.87%682124454.82%34158558.29%1214890937300521272
9Rampage96200001221210430000011266532000001064130.72222375902634229620743544243127213681001715359.43%40490.00%0805139157.87%682124454.82%34158558.29%1214890937300521272
10Reign2200000014410110000007341100000071641.00014274100634229610743544243127229293510550.00%9188.89%0805139157.87%682124454.82%34158558.29%1214890937300521272
11Roadrunners21100000330000000000002110000033020.5003690063422965043544243127291329276116.67%11372.73%0805139157.87%682124454.82%34158558.29%1214890937300521272
Total4429702132139617823152011227732452114501010622933710.8071392383770863422961318435442431279282644998112033818.72%2102090.48%1805139157.87%682124454.82%34158558.29%1214890937300521272
13Wild511010201073411010106421000001043180.8001013230163422961234354424312711732678610110.00%30293.33%0805139157.87%682124454.82%34158558.29%1214890937300521272
14Wolves311010005411010000012-12100100042240.667571201634229665435442431276814546419210.53%22290.91%0805139157.87%682124454.82%34158558.29%1214890937300521272
_Since Last GM Reset4429702132139617823152011227732452114501010622933710.8071392383770863422961318435442431279282644998112033818.72%2102090.48%1805139157.87%682124454.82%34158558.29%1214890937300521272
_Vs Conference3321502122100465417102011125124271611301010492227530.803100168268076342296975435442431277321963526201542818.18%1491589.93%1805139157.87%682124454.82%34158558.29%1214890937300521272

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
4471W3139238377131892826449981108
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
44297213213961
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
2315211227732
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
2114510106229
Derniers 10 Matchs
WLOTWOTL SOWSOL
721000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2033818.72%2102090.48%1
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
435442431276342296
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
805139157.87%682124454.82%34158558.29%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
1214890937300521272


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2019-09-045Griffins2Stars6WSommaire du Match
4 - 2019-09-0519Admirals2Stars3WSommaire du Match
10 - 2019-09-1139Stars4Wild3WXXSommaire du Match
11 - 2019-09-1250Stars4IceHogs1WSommaire du Match
15 - 2019-09-1665Stars4Griffins1WSommaire du Match
17 - 2019-09-1878Wild1Stars0LSommaire du Match
18 - 2019-09-1991Wild0Stars1WSommaire du Match
24 - 2019-09-25113Wolves2Stars1LSommaire du Match
25 - 2019-09-26127Barracuda2Stars3WXXSommaire du Match
31 - 2019-10-02151Stars7Reign1WSommaire du Match
32 - 2019-10-03166Stars5Condors1WSommaire du Match
39 - 2019-10-10201Rampage1Stars3WSommaire du Match
40 - 2019-10-11208Stars4Rampage1WSommaire du Match
43 - 2019-10-14220Moose1Stars4WSommaire du Match
45 - 2019-10-16231IceHogs1Stars7WSommaire du Match
52 - 2019-10-23273Stars2Rampage1WSommaire du Match
53 - 2019-10-24287Rampage4Stars3LXXSommaire du Match
54 - 2019-10-25295Stars0Rampage1LSommaire du Match
59 - 2019-10-30314Stars1Admirals2LSommaire du Match
60 - 2019-10-31325Stars4Griffins3WSommaire du Match
61 - 2019-11-01336Stars1Wolves0WSommaire du Match
64 - 2019-11-04345Admirals2Stars1LXSommaire du Match
66 - 2019-11-06357Admirals3Stars2LXXSommaire du Match
71 - 2019-11-11388Wild1Stars2WXXSommaire du Match
73 - 2019-11-13398Stars5Admirals3WSommaire du Match
74 - 2019-11-14407Stars7IceHogs0WSommaire du Match
77 - 2019-11-17422Stars3Wolves2WXSommaire du Match
80 - 2019-11-20444Rampage1Stars2WSommaire du Match
81 - 2019-11-21460Stars2Rampage3LSommaire du Match
86 - 2019-11-26474Rampage0Stars4WSommaire du Match
88 - 2019-11-28496Reign3Stars7WSommaire du Match
89 - 2019-11-29502Stars2Rampage0WSommaire du Match
94 - 2019-12-04526Moose1Stars5WSommaire du Match
95 - 2019-12-05541Moose1Stars5WSommaire du Match
99 - 2019-12-09557Condors1Stars3WSommaire du Match
101 - 2019-12-11569IceHogs0Stars8WSommaire du Match
102 - 2019-12-12583Wild2Stars3WXSommaire du Match
106 - 2019-12-16604Stars2Gulls1WSommaire du Match
108 - 2019-12-18614Stars1Barracuda2LSommaire du Match
109 - 2019-12-19628Stars1Heat0WSommaire du Match
111 - 2019-12-21642Stars0Roadrunners2LSommaire du Match
113 - 2019-12-23651Stars3Roadrunners1WSommaire du Match
115 - 2019-12-25664Heat1Stars2WSommaire du Match
116 - 2019-12-26680Gulls0Stars2WSommaire du Match
121 - 2019-12-31682Griffins-Stars-
127 - 2020-01-06721Stars-Admirals-
130 - 2020-01-09742Stars-Moose-
131 - 2020-01-10750Stars-Moose-
133 - 2020-01-12759Stars-IceHogs-
136 - 2020-01-15777Roadrunners-Stars-
137 - 2020-01-16790Roadrunners-Stars-
140 - 2020-01-19807Stars-Wild-
142 - 2020-01-21814Stars-Wolves-
143 - 2020-01-22820Stars-Griffins-
145 - 2020-01-24844Stars-Wolves-
148 - 2020-01-27853Admirals-Stars-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
150 - 2020-01-29863Wolves-Stars-
151 - 2020-01-30877Wolves-Stars-
154 - 2020-02-02889Stars-Admirals-
155 - 2020-02-03891Stars-Griffins-
158 - 2020-02-06919Stars-Rampage-
159 - 2020-02-07929Rampage-Stars-
162 - 2020-02-10940Stars-Moose-
164 - 2020-02-12951Stars-Moose-
166 - 2020-02-14970Stars-IceHogs-
169 - 2020-02-17982Griffins-Stars-
171 - 2020-02-19990Wolves-Stars-
172 - 2020-02-201004Griffins-Stars-
176 - 2020-02-241024Moose-Stars-
178 - 2020-02-261034Stars-Wild-
179 - 2020-02-271046Stars-Wild-
185 - 2020-03-041080IceHogs-Stars-
186 - 2020-03-051094IceHogs-Stars-
190 - 2020-03-091110Rampage-Stars-
192 - 2020-03-111124Stars-Rampage-
193 - 2020-03-121138Rampage-Stars-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
15 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
718,854$ 159,880$ 21,320$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 105,471$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 75 5,979$ 448,425$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
144429702132139617823152011227732452114501010622933711392383770863422961318435442431279282644998112033818.72%2102090.48%1805139157.87%682124454.82%34158558.29%1214890937300521272
Total Saison Régulière4429702132139617823152011227732452114501010622933711392383770863422961318435442431279282644998112033818.72%2102090.48%1805139157.87%682124454.82%34158558.29%1214890937300521272