Comets

GP: 29 | W: 16 | L: 10 | OTL: 3 | P: 35
GF: 85 | GA: 51 | PP%: 16.41% | PK%: 89.57%
DG: Francis Lagace | Morale : 54 | Moyenne d'Équipe : 62
Prochain matchs #415 vs Checkers
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Alexandre GrenierX100.007238845689939155595553595475685357610
2Austin WagnerX100.008340896274677261556264566163625755610
3Steven FogartyX100.006236905785787156625857595571666261600
4Garrett Pilon (R)X100.005835935972949258625753565262636458600
5John McCarronX100.007337875887746957615756605773675858600
6Justin ScottX100.006439825678939055565354565567646164590
7Tobias LindbergX100.007237895586928854525451575367646061590
8Nolan Stevens (R)X100.006235935580918754625353565465636258590
9Dalton Smith (R)X100.006845655482888253585452565373676652580
10Tyler RandellX100.006341775477827653545251545275685761570
11Chase Pearson (R)X100.006235935478706753615254555363626358560
12Fredrik ClaessonX100.008342826577835863306756725373675661670
13Cale Fleury (R)X100.006636906278918760305956585561637158630
14Yannick WeberX100.007338856372707562306458614779715157630
15Philip SamuelssonX100.006436905479939052305351544575685661610
16Erik Brannstrom (R)X100.005437886465877363306258595460628658610
17Mark FriedmanX100.005437895969847358305653554567646261590
Rayé
MOYENNE D'ÉQUIPE100.00673886587884795748575558536965615960
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jared Coreau100.00728078927170727170727175814551730
2Kasimir Kaskisuo100.00757472837473757473757471755161730
Rayé
1Hunter Miska100.00766563727574767574767567714821700
MOYENNE D'ÉQUIPE100.0074737182737274737274737176484472
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Luke Richardson68676563757075CAN5052,500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Garrett PilonComets (Van)C291215271100105384265414.29%260220.78268211050004811152.31%54100000.9002000224
2John McCarronComets (Van)RW299152411260393277256111.69%656519.52347171030001481048.86%8800000.8503000130
3Fredrik ClaessonComets (Van)D29119201167594505715301.75%3168723.72189371070000109000.00%000000.5800000101
4Yannick WeberComets (Van)D29416201161557345721267.02%2857219.7543741920000103010.00%000000.7000000122
5Cale FleuryComets (Van)D2931619810019243810257.89%1865822.70347221080001142000.00%000000.5811000001
6Dalton SmithComets (Van)LW29871511501056164893616.67%048616.77336151040000223151.61%3100010.6200020210
7Alexandre GrenierComets (Van)RW29771413495575267185510.45%1274525.702461510100031481051.61%31000010.3803000100
8Steven FogartyComets (Van)C2985131180145165163412.31%659920.672242110100021070052.99%50200100.4303000013
9Dennis CholowskiVancouver CanucksD1249131440683071713.33%1024920.761121836000151300.00%000001.0400000101
10Tobias LindbergComets (Van)RW294812218037224611278.70%650617.460333490000310055.36%5600000.4711000100
11Erik BrannstromComets (Van)D291111272002323159166.67%1840814.0800035000018100.00%000000.5911000000
12Nolan StevensComets (Van)C295712820182332112815.63%634511.92000000000391049.66%29600000.6911000040
13Justin ScottComets (Van)C295494135162932123715.63%22629.0400015000010050.95%26300000.6901100000
14Philip SamuelssonComets (Van)D290997260461311460.00%1743915.1500015000049000.00%000000.4100000000
15Austin WagnerComets (Van)LW853810120161632111815.63%117822.340112330001281047.62%2100000.9000000120
16Tyler RandellComets (Van)RW29628712019163982315.38%229110.0400000000002169.23%1300000.5500000211
17Mark FriedmanComets (Van)D29055400135110.00%51063.6701113000022000.00%000000.9400000000
18Chase PearsonComets (Van)C292133205351740.00%21314.530001100000141057.14%2800000.4600000200
Stats d'équipe Total ou en Moyenne484841592431533803053346874021550111.35%172783616.1921406121997500013102015451.88%214900120.62416120151613
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jared CoreauComets (Van)29161030.9231.74169306496350000.68716290402
2Kasimir KaskisuoComets (Van)20001.0000.0063000210000.0000029000
Stats d'équipe Total ou en Moyenne31161030.9251.67175606496560000.687162929402


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Link
Alexandre GrenierComets (Van)RW271991-09-05No200 Lbs6 ft5NoNoNo4Avec RestrictionPro & Farm300,000$0$0$NoLien
Austin WagnerComets (Van)LW221997-06-23No185 Lbs6 ft1NoNoNo3Contrat d'EntréePro & Farm300,000$0$0$NoLien
Cale FleuryComets (Van)D201998-10-19Yes201 Lbs6 ft1NoNoNo4Contrat d'EntréePro & Farm500,000$0$0$NoLien
Chase PearsonComets (Van)C211997-08-23Yes189 Lbs6 ft2NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$NoLien
Dalton SmithComets (Van)LW271992-06-30Yes206 Lbs6 ft2NoNoNo1Avec RestrictionPro & Farm300,000$0$0$NoLien
Erik BrannstromComets (Van)D191999-09-02Yes173 Lbs5 ft10NoNoNo1Contrat d'EntréePro & Farm0$0$NoLien
Fredrik ClaessonComets (Van)D261992-11-24No196 Lbs6 ft1NoNoNo4Avec RestrictionPro & Farm1,000,000$0$0$NoLien
Garrett PilonComets (Van)C211998-04-13Yes188 Lbs6 ft0NoNoNo4Contrat d'EntréePro & Farm300,000$0$0$NoLien
Hunter MiskaComets (Van)G231995-07-07No175 Lbs6 ft1NoNoNo3Avec RestrictionPro & Farm300,000$0$0$NoLien
Jared CoreauComets (Van)G271991-11-05No214 Lbs6 ft5NoNoNo2Avec RestrictionPro & Farm750,000$0$0$NoLien
John McCarronComets (Van)RW271992-04-16No219 Lbs6 ft3NoNoNo1Avec RestrictionPro & Farm300,000$0$0$NoLien
Justin ScottComets (Van)C231995-08-13No202 Lbs6 ft1NoNoNo2Avec RestrictionPro & Farm300,000$0$0$NoLien
Kasimir KaskisuoComets (Van)G251993-10-02No196 Lbs6 ft3NoNoNo1Avec RestrictionPro & Farm300,000$0$0$NoLien
Mark FriedmanComets (Van)D231995-12-25No185 Lbs5 ft11NoNoNo3Avec RestrictionPro & Farm300,000$0$0$NoLien
Nolan StevensComets (Van)C221996-07-22Yes183 Lbs6 ft3NoNoNo4Contrat d'EntréePro & Farm500,000$0$0$NoLien
Philip SamuelssonComets (Van)D271991-07-26No194 Lbs6 ft2NoNoNo3Avec RestrictionPro & Farm300,000$0$0$NoLien
Steven FogartyComets (Van)C261993-04-19No210 Lbs6 ft3NoNoNo2Avec RestrictionPro & Farm300,000$0$0$NoLien
Tobias LindbergComets (Van)RW231995-07-22No215 Lbs6 ft3NoNoNo1Avec RestrictionPro & Farm300,000$0$0$NoLien
Tyler RandellComets (Van)RW281991-06-15No198 Lbs6 ft1NoNoNo1Sans RestrictionPro & Farm300,000$0$0$NoLien
Yannick WeberComets (Van)D301988-09-23No200 Lbs5 ft11NoNoNo2Sans RestrictionPro & Farm500,000$0$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2024.35196 Lbs6 ft22.50372,500$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Dalton SmithSteven FogartyAlexandre Grenier40122
2Tobias LindbergGarrett PilonJohn McCarron30122
3Alexandre GrenierJustin ScottTobias Lindberg20122
4Steven FogartyNolan StevensTyler Randell10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Fredrik ClaessonCale Fleury40122
2Yannick Weber30122
3Erik BrannstromPhilip Samuelsson20122
4Mark FriedmanFredrik Claesson10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Dalton SmithSteven FogartyAlexandre Grenier60122
2Tobias LindbergGarrett PilonJohn McCarron40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Fredrik ClaessonCale Fleury60122
2Yannick Weber40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Alexandre GrenierSteven Fogarty60122
2John McCarronGarrett Pilon40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Fredrik ClaessonCale Fleury60122
2Yannick Weber40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Alexandre Grenier60122Fredrik ClaessonCale Fleury60122
2Steven Fogarty40122Yannick Weber40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Alexandre GrenierSteven Fogarty60122
2John McCarronGarrett Pilon40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Fredrik ClaessonCale Fleury60122
2Yannick Weber40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Dalton SmithSteven FogartyAlexandre GrenierFredrik ClaessonCale Fleury
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Dalton SmithSteven FogartyAlexandre GrenierFredrik ClaessonCale Fleury
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Chase Pearson, Justin Scott, Nolan StevensChase Pearson, Justin ScottNolan Stevens
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Erik Brannstrom, Philip Samuelsson, Mark FriedmanErik BrannstromPhilip Samuelsson, Mark Friedman
Tirs de Pénalité
Alexandre Grenier, Steven Fogarty, John McCarron, Garrett Pilon, Tobias Lindberg
Gardien
#1 : Jared Coreau, #2 : Kasimir Kaskisuo


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans41200001812-41010000014-33110000178-130.37581523002725306582312202772812426578514214.29%25388.00%045886952.70%42286248.96%23640458.42%738518670206352182
2Bruins1000000123-11000000123-10000000000010.50023500272530626231220277282231218200.00%5180.00%045886952.70%42286248.96%23640458.42%738518670206352182
3Checkers220000001601622000000160160000000000041.0001630460227253069423122027728271016327228.57%80100.00%045886952.70%42286248.96%23640458.42%738518670206352182
4Crunch21001000514110000003031000100021141.000510150127253066923122027728501323321616.25%90100.00%045886952.70%42286248.96%23640458.42%738518670206352182
5Devils4030001039-61010000001-13020001038-520.2503470027253065923122027728822572581119.09%28582.14%045886952.70%42286248.96%23640458.42%738518670206352182
6Marlies33000000172151100000071622000000101961.000173249012725306136231220277285418367610220.00%180100.00%045886952.70%42286248.96%23640458.42%738518670206352182
7Monsters11000000422110000004220000000000021.0004812002725306222312202772831710201218.33%50100.00%045886952.70%42286248.96%23640458.42%738518670206352182
8Rocket5220100014113211000007613110100075260.6001427410027253061232312202772811133608029620.69%20385.00%045886952.70%42286248.96%23640458.42%738518670206352182
9Senators422000001046211000004222110000062440.50010182802272530682231220277286623486715320.00%22386.36%045886952.70%42286248.96%23640458.42%738518670206352182
10Thunderbirds1010000013-21010000013-20000000000000.00012300272530624231220277283741620100.00%8275.00%045886952.70%42286248.96%23640458.42%738518670206352182
Total2913100211285513414850000149242515550211136279350.60385159244062725306740231220277286561753805331282116.41%1631789.57%045886952.70%42286248.96%23640458.42%738518670206352182
12Wolf Pack21000100541110000004221000010012-130.7505101500272530647231220277285213304511327.27%150100.00%045886952.70%42286248.96%23640458.42%738518670206352182
_Since Last GM Reset2913100211285513414850000149242515550211136279350.60385159244062725306740231220277286561753805331282116.41%1631789.57%045886952.70%42286248.96%23640458.42%738518670206352182
_Vs Conference1585010015628287430000032141884201001241410190.633561061620327253064352312202772835391185293611219.67%79889.87%045886952.70%42286248.96%23640458.42%738518670206352182

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
2935L18515924474065617538053306
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
29131021128551
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
148500014924
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
155521113627
Derniers 10 Matchs
WLOTWOTL SOWSOL
160012
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1282116.41%1631789.57%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
231220277282725306
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
45886952.70%42286248.96%23640458.42%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
738518670206352182


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2019-09-041Marlies1Comets7WSommaire du Match
4 - 2019-09-0512Senators0Comets3WSommaire du Match
10 - 2019-09-1133Checkers0Comets8WSommaire du Match
11 - 2019-09-1245Comets3Marlies0WSommaire du Match
12 - 2019-09-1360Comets7Marlies1WSommaire du Match
15 - 2019-09-1663Americans4Comets1LSommaire du Match
17 - 2019-09-1872Monsters2Comets4WSommaire du Match
18 - 2019-09-1985Comets2Crunch1WXSommaire du Match
22 - 2019-09-23104Checkers0Comets8WSommaire du Match
24 - 2019-09-25111Comets2Americans3LSommaire du Match
31 - 2019-10-02147Comets3Rocket2WXSommaire du Match
32 - 2019-10-03153Comets3Rocket1WSommaire du Match
36 - 2019-10-07176Rocket4Comets3LSommaire du Match
38 - 2019-10-09181Wolf Pack2Comets4WSommaire du Match
39 - 2019-10-10199Comets0Devils3LSommaire du Match
43 - 2019-10-14218Comets5Senators0WSommaire du Match
45 - 2019-10-16224Crunch0Comets3WSommaire du Match
46 - 2019-10-17237Comets1Wolf Pack2LXSommaire du Match
50 - 2019-10-21259Rocket2Comets4WSommaire du Match
52 - 2019-10-23270Comets2Americans3LXXSommaire du Match
53 - 2019-10-24279Senators2Comets1LSommaire du Match
57 - 2019-10-28304Comets1Devils4LSommaire du Match
59 - 2019-10-30309Comets1Senators2LSommaire du Match
60 - 2019-10-31319Comets1Rocket2LSommaire du Match
64 - 2019-11-04344Comets3Americans2WSommaire du Match
66 - 2019-11-06349Thunderbirds3Comets1LSommaire du Match
67 - 2019-11-07370Comets2Devils1WXXSommaire du Match
71 - 2019-11-11383Bruins3Comets2LXXSommaire du Match
73 - 2019-11-13391Devils1Comets0LSommaire du Match
75 - 2019-11-15415Comets-Checkers-
77 - 2019-11-17423Comets-Checkers-
80 - 2019-11-20440Comets-Thunderbirds-
81 - 2019-11-21458Devils-Comets-
86 - 2019-11-26472Devils-Comets-
87 - 2019-11-27476Comets-Crunch-
88 - 2019-11-28490Americans-Comets-
92 - 2019-12-02511Crunch-Comets-
95 - 2019-12-05531Comets-Monsters-
96 - 2019-12-06545Comets-Monsters-
99 - 2019-12-09552Comets-Marlies-
101 - 2019-12-11562Sound Tigers-Comets-
102 - 2019-12-12577Crunch-Comets-
106 - 2019-12-16596Crunch-Comets-
108 - 2019-12-18606Devils-Comets-
109 - 2019-12-19621Senators-Comets-
115 - 2019-12-25661Comets-Americans-
122 - 2020-01-01685Comets-Crunch-
123 - 2020-01-02704Comets-Thunderbirds-
129 - 2020-01-08723Phantoms-Comets-
130 - 2020-01-09740Americans-Comets-
131 - 2020-01-10748Comets-Sound Tigers-
134 - 2020-01-13764Rocket-Comets-
137 - 2020-01-16787Comets-Penguins-
138 - 2020-01-17799Monsters-Comets-
143 - 2020-01-22818Americans-Comets-
144 - 2020-01-23835Comets-Devils-
148 - 2020-01-27852Americans-Comets-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
150 - 2020-01-29857Bears-Comets-
151 - 2020-01-30875Comets-Phantoms-
155 - 2020-02-03890Crunch-Comets-
157 - 2020-02-05897Comets-Crunch-
158 - 2020-02-06910Comets-Rocket-
162 - 2020-02-10938Comets-Americans-
164 - 2020-02-12944Thunderbirds-Comets-
165 - 2020-02-13957Wolf Pack-Comets-
169 - 2020-02-17979Comets-Senators-
171 - 2020-02-19984Rocket-Comets-
172 - 2020-02-20997Comets-Crunch-
178 - 2020-02-261029Marlies-Comets-
179 - 2020-02-271043Comets-Crunch-
185 - 2020-03-041074Marlies-Comets-
186 - 2020-03-051088Comets-Wolf Pack-
187 - 2020-03-061101Comets-Bruins-
192 - 2020-03-111116Penguins-Comets-
193 - 2020-03-121129Comets-Bears-
194 - 2020-03-131147Crunch-Comets-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
24 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
969,379$ 74,500$ 22,180$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 28,650$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 121 13,271$ 1,605,791$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1429131002112855134148500001492425155502111362793585159244062725306740231220277286561753805331282116.41%1631789.57%045886952.70%42286248.96%23640458.42%738518670206352182
Total Saison Régulière29131002112855134148500001492425155502111362793585159244062725306740231220277286561753805331282116.41%1631789.57%045886952.70%42286248.96%23640458.42%738518670206352182