Monsters

GP: 76 | W: 49 | L: 22 | OTL: 5 | P: 103
GF: 271 | GA: 156 | PP%: 16.17% | PK%: 87.01%
DG: Patrick Auger | Morale : 81 | Moyenne d'Équipe : 63
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Buddy RobinsonX100.008338846099928959666055645775685782650
2Nick CousinsXXX100.008144816469749463736563616471686376640
3Oscar LindbergX100.008140846378736862726165646375685882640
4Casey Mittelstadt (R)X100.005636916977749068746765526961628780640
5Brendan LeipsicXX100.006439856667757665537261596369666182630
6Ryan HaggertyXX100.006138866074939159625659585971665982620
7Emil PetterssonX100.005537896073928859676154565769656082610
8Daniel AudetteX100.005238845864949256635854535665636282590
9Brayden BurkeX100.005236905954939058615754535663627282590
10Nikita SoshnikovX100.005435936069666358555756595471665182580
11Jonah Gadjovich (R)X100.006838845582857954555352565361636482580
12David Kase (R)X100.005336925855837657645954535663626346570
13Max VeronneauX100.005235955772735356525558535667644324560
14Ryan SproulX100.007136925887928956305753614671666782650
15Josiah DidierX100.006641765581847854305451564571666081610
16Kyle BurroughsX100.005942735572939152305451534866747181600
17Jeremy RoyX100.006036915673918755305652544663627482600
18Brennan MenellX100.005236906057939159306551544963626382600
19Will O'NeillX100.006244695675797355305751554579715482600
Rayé
MOYENNE D'ÉQUIPE100.00623886597384825852595657556865637761
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Marcus Hogberg100.00796967917877797877797869736482750
2Eamon McAdam100.00737068747271737271737269735182700
Rayé
1Evan Cormier (R)100.00736967837271737271737263675320690
2Filip Gustavsson100.00717472777069717069717061657520680
MOYENNE D'ÉQUIPE100.0074716981737274737274736670615171
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Todd McLellan81757775777173CAN5155,000,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Oscar LindbergMonsters (Clb)LW764549944912402011212978720215.15%13141218.591012226625800041249161.86%9700021.33110001093
2Brendan LeipsicMonsters (Clb)C/LW7628528043355521252086317013.46%11141818.66814224126100061703553.21%96600001.1336001646
3Ryan HaggertyMonsters (Clb)C/RW762450745021547851975715412.18%15128016.845152050267000006252.20%65900001.1601001426
4Nick CousinsMonsters (Clb)C/LW/RW7627376433158501571592516416510.76%19159721.027101752264022103077058.79%99500100.8018325256
5Buddy RobinsonMonsters (Clb)RW76242852358751561152215311910.86%19159921.05671353275303163294062.66%39900010.6528000535
6Ryan SproulMonsters (Clb)D761038483798014364100366310.00%78185424.4141014622830221328000.00%000000.5200000411
7Casey MittelstadtMonsters (Clb)C4620244423606121163599812.27%6104622.761783516510172322060.98%117900010.8403000521
8Nikita SoshnikovMonsters (Clb)RW761623393210018561544310310.39%1497112.7824613103000002244.07%5900010.8000000225
9Emil PetterssonMonsters (Clb)C761622383021532114182361068.79%10110614.56000040001483456.95%95700000.6900001244
10Kyle BurroughsMonsters (Clb)D76730374912420136235694412.50%58163821.564610322520000306100.00%000000.4500004120
11Jeremy RoyMonsters (Clb)D768283651600674968244711.76%59174022.90257352740110324110.00%000000.4100000213
12Jonah GadjovichMonsters (Clb)LW761216282868011847101328811.88%13104713.7800000000042052.17%4600000.5300000101
13Josiah DidierMonsters (Clb)D76621273312715137406621449.09%76174022.904711302640222308100.00%000000.3100003110
14Will O'NeillMonsters (Clb)D766182434119251183741101914.63%60107314.1300009011070100.00%000000.4500401012
15Brayden BurkeMonsters (Clb)RW7610112113335225910525819.52%27389.7200001000002053.13%3200000.5700001022
16Brennan MenellMonsters (Clb)D7611718282402757231084.35%41108614.3010134000095000.00%000000.3300000000
17Daniel AudetteMonsters (Clb)C7611112800515265123.85%11912.52011019000180053.69%14900001.2511000010
18David KaseMonsters (Clb)RW48347220391821116.67%41412.95000110000000036.36%2200000.9900000100
19Max VeronneauMonsters (Clb)RW18011000101010.00%050.320111500000000.00%000003.5000000000
Stats d'équipe Total ou en Moyenne13282644807445781117135144612962278636153511.59%4992169216.33549915347427274812482660441557.05%556000150.698287217464045
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Marcus HogbergMonsters (Clb)76482250.9141.98456821215117470210.73126760266
2Eamon McAdamMonsters (Clb)11001.0000.003000090000.0000076000
Stats d'équipe Total ou en Moyenne77492250.9141.97459821215117560210.731267676266


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Brayden BurkeMonsters (Clb)RW221997-01-01No165 Lbs5 ft1NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Brendan LeipsicMonsters (Clb)C/LW251994-05-19No182 Lbs5 ft10NoNoNo4Pro & Farm500,000$0$0$No500,000$500,000$500,000$Lien
Brennan MenellMonsters (Clb)D221997-05-24No177 Lbs5 ft1NoNoNo3Pro & Farm300,000$0$0$No300,000$300,000$Lien
Buddy RobinsonMonsters (Clb)RW271991-09-30No232 Lbs6 ft6NoNoNo1Pro & Farm300,000$0$0$NoLien
Casey MittelstadtMonsters (Clb)C201998-11-22Yes202 Lbs6 ft1NoNoNo4Pro & Farm900,000$0$0$No900,000$900,000$900,000$Lien
Daniel AudetteMonsters (Clb)C231996-05-06No176 Lbs5 ft8NoNoNo2Pro & Farm500,000$0$0$No500,000$Lien
David KaseMonsters (Clb)RW221997-01-28Yes169 Lbs5 ft1NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Eamon McAdamMonsters (Clb)G241994-09-24No200 Lbs6 ft0NoNoNo2Pro & Farm300,000$0$0$No300,000$Lien
Emil PetterssonMonsters (Clb)C251994-01-14No164 Lbs6 ft2NoNoNo3Pro & Farm300,000$0$0$No300,000$300,000$Lien
Evan CormierMonsters (Clb)G211997-11-06Yes200 Lbs6 ft3NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Filip GustavssonMonsters (Clb)G211998-06-07No184 Lbs6 ft2NoNoNo3Pro & Farm500,000$0$0$No500,000$500,000$Lien
Jeremy RoyMonsters (Clb)D221997-05-14No195 Lbs6 ft0NoNoNo3Pro & Farm500,000$0$0$No500,000$500,000$Lien
Jonah GadjovichMonsters (Clb)LW201998-12-10Yes209 Lbs6 ft2NoNoNo4Pro & Farm500,000$0$0$No500,000$500,000$500,000$Lien
Josiah DidierMonsters (Clb)D261993-04-08No202 Lbs6 ft2NoNoNo2Pro & Farm300,000$0$0$No300,000$Lien
Kyle BurroughsMonsters (Clb)D231995-07-12No198 Lbs5 ft11NoNoNo1Pro & Farm300,000$0$0$NoLien
Marcus HogbergMonsters (Clb)G241994-11-25No209 Lbs6 ft5NoNoNo3Pro & Farm300,000$0$0$No300,000$300,000$Lien
Max VeronneauMonsters (Clb)RW231995-12-12No190 Lbs6 ft0NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Nick CousinsMonsters (Clb)C/LW/RW251993-07-20No185 Lbs5 ft11NoNoNo2Pro & Farm300,000$0$0$No300,000$Lien
Nikita SoshnikovMonsters (Clb)RW251993-10-14No185 Lbs5 ft11NoNoNo1Pro & Farm300,000$0$0$NoLien
Oscar LindbergMonsters (Clb)LW271991-10-29No202 Lbs6 ft1NoNoNo2Pro & Farm500,000$0$0$No500,000$Lien
Ryan HaggertyMonsters (Clb)C/RW261993-03-04No200 Lbs6 ft0NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Ryan SproulMonsters (Clb)D261993-01-13No205 Lbs6 ft4NoNoNo2Pro & Farm300,000$0$0$No300,000$Lien
Will O'NeillMonsters (Clb)D311988-04-28No190 Lbs6 ft1NoNoNo3Pro & Farm300,000$0$0$No300,000$300,000$Lien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2323.91192 Lbs5 ft112.83378,261$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Nick CousinsCasey MittelstadtBuddy Robinson40122
2Oscar LindbergBrendan LeipsicRyan Haggerty30122
3Jonah GadjovichEmil PetterssonBrayden Burke20122
4Buddy RobinsonDaniel AudetteNikita Soshnikov10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ryan SproulJosiah Didier40122
2Kyle BurroughsJeremy Roy30122
3Will O'NeillBrennan Menell20122
4Ryan SproulJosiah Didier10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Nick CousinsCasey MittelstadtBuddy Robinson60122
2Oscar LindbergBrendan LeipsicRyan Haggerty40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ryan SproulJosiah Didier60122
2Kyle BurroughsJeremy Roy40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Buddy RobinsonCasey Mittelstadt60122
2Nick CousinsOscar Lindberg40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ryan SproulJosiah Didier60122
2Kyle BurroughsJeremy Roy40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Buddy Robinson60122Ryan SproulJosiah Didier60122
2Casey Mittelstadt40122Kyle BurroughsJeremy Roy40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Buddy RobinsonCasey Mittelstadt60122
2Nick CousinsOscar Lindberg40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ryan SproulJosiah Didier60122
2Kyle BurroughsJeremy Roy40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Nick CousinsCasey MittelstadtBuddy RobinsonRyan SproulJosiah Didier
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Nick CousinsCasey MittelstadtBuddy RobinsonRyan SproulJosiah Didier
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
David Kase, Max Veronneau, Emil PetterssonDavid Kase, Max VeronneauEmil Pettersson
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Will O'Neill, Brennan Menell, Kyle BurroughsWill O'NeillBrennan Menell, Kyle Burroughs
Tirs de Pénalité
Buddy Robinson, Casey Mittelstadt, Nick Cousins, Oscar Lindberg, Brendan Leipsic
Gardien
#1 : Marcus Hogberg, #2 : Eamon McAdam


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals42100001981210000014312110000055050.625915240111277751112875874777349682458653239.38%23482.61%01366241056.68%1321230557.31%640110957.71%204314781655527908469
2Americans834000011820-241200001510-5422000001310370.4381833511111277751120575874777349207529515936411.11%43783.72%01366241056.68%1321230557.31%640110957.71%204314781655527908469
3Bears4210000115123211000008532100000177050.62515284300112777511117758747773499830389021419.05%19668.42%01366241056.68%1321230557.31%640110957.71%204314781655527908469
4Checkers44000000323292200000017116220000001521381.00032619301112777511229758747773496619298314428.57%12191.67%21366241056.68%1321230557.31%640110957.71%204314781655527908469
5Comets431000001174220000005322110000064260.75011193001112777511116758747773499224615724416.67%27485.19%01366241056.68%1321230557.31%640110957.71%204314781655527908469
6Crunch431000001192220000006332110000056-160.75011193000112777511787587477734911229819615426.67%30390.00%01366241056.68%1321230557.31%640110957.71%204314781655527908469
7Devils40301000712-5201010006602020000016-520.25071320001127775118675874777349802648671616.25%24291.67%11366241056.68%1321230557.31%640110957.71%204314781655527908469
8Griffins4400000018216220000009272200000090981.000183250031127775111187587477734989266872900.00%21195.24%01366241056.68%1321230557.31%640110957.71%204314781655527908469
9IceHogs430010001851322000000111102100100074381.0001835530111277751115575874777349862546591218.33%18194.44%01366241056.68%1321230557.31%640110957.71%204314781655527908469
10Marlies8800000055104544000000247174400000031328161.0005510015502112777511415758747773491433815417824416.67%45393.33%11366241056.68%1321230557.31%640110957.71%204314781655527908469
11Penguins421000101183211000006512100001053260.75011182900112777511108758747773498425678226415.38%20290.00%01366241056.68%1321230557.31%640110957.71%204314781655527908469
12Phantoms40301000712-52020000036-32010100046-220.2507121900112777511677587477734910435817714214.29%27292.59%01366241056.68%1321230557.31%640110957.71%204314781655527908469
13Rocket853000002923643100000161334220000013103100.625295079001127775112027587477734922253124148391128.21%511080.39%01366241056.68%1321230557.31%640110957.71%204314781655527908469
14Senators8230012025196413000001284410001201311290.56325426701112777511193758747773492046412714939820.51%49883.67%01366241056.68%1321230557.31%640110957.71%204314781655527908469
Total764222031442711561153823110101213776613819110213213480541030.6782714847551111127775112299758747773491757503112314523345416.17%4315687.01%41366241056.68%1321230557.31%640110957.71%204314781655527908469
16Wolves4110001156-1210000105322010000103-350.62557120011277751182758747773491023346701300.00%22290.91%01366241056.68%1321230557.31%640110957.71%204314781655527908469
_Since Last GM Reset764222031442711561153823110101213776613819110213213480541030.6782714847551111127775112299758747773491757503112314523345416.17%4315687.01%41366241056.68%1321230557.31%640110957.71%204314781655527908469
_Vs Conference289120213176724145801000413381444011313539-4300.5367613220801112777511649758747773496822094425611312317.56%1692386.39%11366241056.68%1321230557.31%640110957.71%204314781655527908469
_Vs Division400602000156837320030100072432920030100084404440.050156276432171127775111211758747773499772626498021623119.14%2393286.61%11366241056.68%1321230557.31%640110957.71%204314781655527908469

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
76103W32714847552299175750311231452111
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
7642223144271156
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
382311101213776
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
381911213213480
Derniers 10 Matchs
WLOTWOTL SOWSOL
630100
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
3345416.17%4315687.01%4
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
75874777349112777511
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
1366241056.68%1321230557.31%640110957.71%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
204314781655527908469


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2019-09-042IceHogs1Monsters6WSommaire du Match
4 - 2019-09-0510IceHogs0Monsters5WSommaire du Match
6 - 2019-09-0727Monsters7Marlies2WSommaire du Match
9 - 2019-09-1032Penguins3Monsters2LSommaire du Match
11 - 2019-09-1247Penguins2Monsters4WSommaire du Match
17 - 2019-09-1872Monsters2Comets4LSommaire du Match
18 - 2019-09-1990Monsters0Devils4LSommaire du Match
22 - 2019-09-23102Monsters0Wolves2LSommaire du Match
24 - 2019-09-25112Monsters4Admirals3WSommaire du Match
25 - 2019-09-26120Monsters4IceHogs3WXSommaire du Match
31 - 2019-10-02141Marlies1Monsters3WSommaire du Match
33 - 2019-10-04169Griffins2Monsters6WSommaire du Match
36 - 2019-10-07177Monsters4Americans2WSommaire du Match
38 - 2019-10-09182Rocket4Monsters5WSommaire du Match
39 - 2019-10-10192Rocket4Monsters7WSommaire du Match
45 - 2019-10-16223Monsters4Bears3WSommaire du Match
46 - 2019-10-17238Monsters3Bears4LXXSommaire du Match
52 - 2019-10-23266Marlies2Monsters7WSommaire du Match
54 - 2019-10-25293Monsters7Marlies0WSommaire du Match
57 - 2019-10-28301Marlies2Monsters6WSommaire du Match
59 - 2019-10-30308Crunch1Monsters3WSommaire du Match
60 - 2019-10-31318Crunch2Monsters3WSommaire du Match
64 - 2019-11-04343Monsters1Phantoms4LSommaire du Match
66 - 2019-11-06354Monsters3Penguins2WSommaire du Match
67 - 2019-11-07369Monsters3Phantoms2WXSommaire du Match
73 - 2019-11-13395Monsters5Americans2WSommaire du Match
74 - 2019-11-14404Americans3Monsters2LXXSommaire du Match
78 - 2019-11-18426Monsters4Griffins0WSommaire du Match
80 - 2019-11-20436Senators1Monsters0LSommaire du Match
81 - 2019-11-21449Senators0Monsters8WSommaire du Match
85 - 2019-11-25465Americans4Monsters2LSommaire du Match
87 - 2019-11-27477Griffins0Monsters3WSommaire du Match
88 - 2019-11-28492Monsters5Griffins0WSommaire du Match
95 - 2019-12-05531Comets2Monsters3WSommaire du Match
96 - 2019-12-06545Comets1Monsters2WSommaire du Match
99 - 2019-12-09553Monsters5Senators4WXXSommaire du Match
101 - 2019-12-11563Monsters2Crunch5LSommaire du Match
102 - 2019-12-12582Monsters1Devils2LSommaire du Match
108 - 2019-12-18610Monsters2Rocket3LSommaire du Match
109 - 2019-12-19616Monsters3Rocket4LSommaire du Match
113 - 2019-12-23647Marlies2Monsters8WSommaire du Match
114 - 2019-12-24653Wolves2Monsters3WXXSommaire du Match
116 - 2019-12-26675Wolves1Monsters2WSommaire du Match
122 - 2020-01-01688Monsters2Penguins1WXXSommaire du Match
123 - 2020-01-02702Monsters3Crunch1WSommaire du Match
126 - 2020-01-05713Monsters9Checkers1WSommaire du Match
127 - 2020-01-06716Monsters6Checkers1WSommaire du Match
130 - 2020-01-09739Devils4Monsters5WXSommaire du Match
131 - 2020-01-10749Devils2Monsters1LSommaire du Match
133 - 2020-01-12757Americans0Monsters1WSommaire du Match
136 - 2020-01-15769Monsters3Senators2WXXSommaire du Match
137 - 2020-01-16783Monsters4Senators3WSommaire du Match
138 - 2020-01-17799Monsters4Comets0WSommaire du Match
141 - 2020-01-20811Monsters0Americans1LSommaire du Match
143 - 2020-01-22819Admirals0Monsters2WSommaire du Match
145 - 2020-01-24841Admirals3Monsters2LXXSommaire du Match
149 - 2020-01-28855Rocket1Monsters3WSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
150 - 2020-01-29859Rocket4Monsters1LSommaire du Match
151 - 2020-01-30868Monsters7Marlies0WSommaire du Match
156 - 2020-02-04896Senators3Monsters2LSommaire du Match
157 - 2020-02-05898Senators4Monsters2LSommaire du Match
162 - 2020-02-10934Monsters1Admirals2LSommaire du Match
164 - 2020-02-12950Monsters0Wolves1LXXSommaire du Match
165 - 2020-02-13960Monsters3IceHogs1WSommaire du Match
171 - 2020-02-19988Monsters4Americans5LSommaire du Match
172 - 2020-02-20996Bears3Monsters0LSommaire du Match
173 - 2020-02-211009Bears2Monsters8WSommaire du Match
178 - 2020-02-261028Phantoms4Monsters2LSommaire du Match
179 - 2020-02-271041Phantoms2Monsters1LSommaire du Match
183 - 2020-03-021066Monsters4Rocket2WSommaire du Match
185 - 2020-03-041078Monsters4Rocket1WSommaire du Match
186 - 2020-03-051090Monsters1Senators2LXSommaire du Match
188 - 2020-03-071104Americans3Monsters0LSommaire du Match
191 - 2020-03-101114Checkers0Monsters10WSommaire du Match
192 - 2020-03-111115Checkers1Monsters7WSommaire du Match
194 - 2020-03-131145Monsters10Marlies1WSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
5,088,127$ 87,000$ 24,370$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 88,063$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 26,222$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
14764222031442711561153823110101213776613819110213213480541032714847551111127775112299758747773491757503112314523345416.17%4315687.01%41366241056.68%1321230557.31%640110957.71%204314781655527908469
Total Saison Régulière764222031442711561153823110101213776613819110213213480541032714847551111127775112299758747773491757503112314523345416.17%4315687.01%41366241056.68%1321230557.31%640110957.71%204314781655527908469