Wild

GP: 26 | W: 17 | L: 6 | OTL: 3 | P: 37
GF: 90 | GA: 39 | PP%: 25.58% | PK%: 84.95%
DG: Kevin Bourassa | Morale : 59 | Moyenne d'Équipe : 64
Prochain matchs #399 vs Rampage
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Steve BernierX100.007442746188928860545761625984745166640
2Phil VaroneX100.005736916472706663766665626177695265630
3Mackenzie MacEachernX100.007238866178726360545863605869666465610
4Nicholas BaptisteX100.006536915778949356585554565567646565600
5Nikita ScherbakX100.005937896179746259555758565567647865590
6Adam BrooksX100.005037896057928859625759525965636265590
7Vitaly Abramov (R)X100.005636926264857161555860546361638065590
8Zach RedmondX100.006937876283918761306260635179715465660
9Gustav ForslingX100.006439816872756266307262715365636821650
10Juuso Valimaki (R)X100.006539836383797162306458725661638465650
11Victor MeteX100.005335946865798266307054655361637265640
12Rinat ValievX100.007239825686918654305752584567646565630
13Ludwig BystromX100.005435935771949256305951544669657165610
Rayé
MOYENNE D'ÉQUIPE100.00623787627584786046615860556966676262
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Anders Nilsson100.00848482988382848382848377835565820
2Parker Milner100.00776462777675777675777677834465730
Rayé
MOYENNE D'ÉQUIPE100.0081747288807981807981807783506578
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Joel Bouchard70696475706580CAN4551,000,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Phil VaroneWild (Min)C261822402220115595205018.95%661723.764121612881125625068.56%63300011.3004000612
2Juuso ValimakiWild (Min)D2610192914200392975113613.33%3062123.9058134892112169110.00%000000.9300000302
3Zach RedmondWild (Min)D265202510480443845114211.11%3270827.2339122592000055200.00%000000.7100000112
4Victor MeteWild (Min)D2612425162013323120293.23%2462924.211892189033063000.00%000000.7900000011
5Steve BernierWild (Min)RW269152410395984710234708.82%568426.33561122921235733063.78%19600000.7014001240
6Mackenzie MacEachernWild (Min)LW268132120140413279265810.13%459422.8643713940001440168.75%6400000.7102000025
7Nicholas BaptisteWild (Min)RW261171812100532274135414.86%257021.9432513961012430044.00%5000000.6311000122
8Adam BrooksWild (Min)C26107171060195182196012.20%157322.051348881012471064.01%53900000.5900000033
9Rinat ValievWild (Min)D26511161628050132982317.24%2160123.135271381011052300.00%000000.5300000011
10Nikita ScherbakWild (Min)RW26291136026166310363.17%255221.25156970000000064.52%3100000.4000000100
11Vitaly AbramovWild (Min)RW2674111560101260165011.67%241616.00101736000070172.22%3600000.5300000031
12Ludwig BystromWild (Min)D262465208191541313.33%2045317.43000124000044000.00%000000.2600000000
13Lucas WallmarkMinnesota WildC30222806813480.00%17926.440110100001120065.82%7900000.5011000000
14Gustav ForslingWild (Min)D4022180324250.00%79323.40000213000016000.00%000000.4300000000
15Gemel SmithMinnesota WildC1011100121110.00%11616.2200000000000054.55%1100001.2300000000
Stats d'équipe Total ou en Moyenne32088160248157199542237876819953511.46%158721122.5433599219497158131759215365.53%163900010.69312001141819
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Anders NilssonWild (Min)2617630.9361.37157808365620100.57114260411
Stats d'équipe Total ou en Moyenne2617630.9361.37157808365620100.57114260411


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Link
Adam BrooksWild (Min)C231996-05-06No180 Lbs5 ft1NoNoNo3Avec RestrictionPro & Farm500,000$0$0$NoLien
Anders NilssonWild (Min)G291990-03-19No232 Lbs6 ft6NoNoNo3Sans RestrictionPro & Farm3,000,000$0$0$NoLien
Gustav ForslingWild (Min)D231996-06-12No186 Lbs6 ft0NoNoNo2Avec RestrictionPro & Farm500,000$0$0$NoLien
Juuso ValimakiWild (Min)D201998-10-06Yes212 Lbs6 ft2NoNoNo4Contrat d'EntréePro & Farm900,000$0$0$NoLien
Ludwig BystromWild (Min)D241994-07-20No169 Lbs6 ft1NoNoNo4Avec RestrictionPro & Farm300,000$0$0$NoLien
Mackenzie MacEachernWild (Min)LW251994-03-09No190 Lbs6 ft2NoNoNo2Avec RestrictionPro & Farm300,000$0$0$NoLien
Nicholas BaptisteWild (Min)RW231995-08-04No205 Lbs6 ft1NoNoNo1Avec RestrictionPro & Farm500,000$0$0$NoLien
Nikita ScherbakWild (Min)RW231995-12-30No192 Lbs6 ft2NoNoNo1Avec RestrictionPro & Farm900,000$0$0$NoLien
Parker MilnerWild (Min)G281990-09-06No196 Lbs6 ft1NoNoNo1Sans RestrictionPro & Farm300,000$0$0$NoLien
Phil VaroneWild (Min)C281990-12-04No193 Lbs5 ft10NoNoNo2Sans RestrictionPro & Farm1,000,000$0$0$NoLien
Rinat ValievWild (Min)D241995-05-11No215 Lbs6 ft3NoNoNo1Avec RestrictionPro & Farm500,000$0$0$NoLien
Steve BernierWild (Min)RW341985-03-31No222 Lbs6 ft3NoNoNo3Sans RestrictionPro & Farm500,000$0$0$NoLien
Victor MeteWild (Min)D211998-06-07No183 Lbs5 ft9NoNoNo3Contrat d'EntréePro & Farm500,000$0$0$NoLien
Vitaly AbramovWild (Min)RW211998-05-08Yes171 Lbs5 ft9NoNoNo4Contrat d'EntréePro & Farm900,000$0$0$NoLien
Zach RedmondWild (Min)D301988-07-26No212 Lbs6 ft2NoNoNo2Sans RestrictionPro & Farm500,000$0$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1525.07197 Lbs6 ft02.40740,000$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Mackenzie MacEachernSteve Bernier40122
2Vitaly AbramovPhil VaroneNicholas Baptiste30122
3Adam BrooksVitaly Abramov20122
4Phil VaroneSteve BernierNikita Scherbak10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Zach RedmondGustav Forsling40122
2Juuso ValimakiVictor Mete30122
3Rinat ValievLudwig Bystrom20122
4Zach RedmondGustav Forsling10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Mackenzie MacEachernSteve Bernier60122
2Vitaly AbramovPhil VaroneNicholas Baptiste40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Zach RedmondGustav Forsling60122
2Juuso ValimakiVictor Mete40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Steve Bernier60122
2Phil VaroneMackenzie MacEachern40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Zach RedmondGustav Forsling60122
2Juuso ValimakiVictor Mete40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
160122Zach RedmondGustav Forsling60122
2Steve Bernier40122Juuso ValimakiVictor Mete40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Steve Bernier60122
2Phil VaroneMackenzie MacEachern40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Zach RedmondGustav Forsling60122
2Juuso ValimakiVictor Mete40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Mackenzie MacEachernSteve BernierZach RedmondGustav Forsling
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Mackenzie MacEachernSteve BernierZach RedmondGustav Forsling
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Adam Brooks, Nikita Scherbak, Nicholas BaptisteAdam Brooks, Nikita ScherbakNicholas Baptiste
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Rinat Valiev, Ludwig Bystrom, Juuso ValimakiRinat ValievLudwig Bystrom, Juuso Valimaki
Tirs de Pénalité
, Steve Bernier, Phil Varone, Mackenzie MacEachern, Nicholas Baptiste
Gardien
#1 : Anders Nilsson, #2 : Parker Milner


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals312000004312020000013-21100000030320.333471101323422451242254262247519244813215.38%11281.82%050580562.73%41069758.82%24637765.25%762562502164316174
2Condors220000001211122000000121110000000000041.0001221330132342247624225426224287123514535.71%6183.33%050580562.73%41069758.82%24637765.25%762562502164316174
3Eagles430010002361722000000112921001000124881.000234164013234224184242254262248732285819736.84%14192.86%450580562.73%41069758.82%24637765.25%762562502164316174
4Griffins32100000936220000008081010000013-240.667917260232342246024225426224471230586233.33%140100.00%050580562.73%41069758.82%24637765.25%762562502164316174
5IceHogs330000001138110000004132200000072561.000112233013234224108242254262246723225413430.77%10370.00%150580562.73%41069758.82%24637765.25%762562502164316174
6Moose43000001197122100000110552200000092770.875193352013234224133242254262247025206820945.00%10190.00%050580562.73%41069758.82%24637765.25%762562502164316174
7Stars4110000257-21000000134-13110000123-140.50059140132342249024225426224961623682514.00%90100.00%050580562.73%41069758.82%24637765.25%762562502164316174
Total2615601013903951148300012552233127301001351718370.71290161251083234224769242254262245621591994231293325.58%931484.95%550580562.73%41069758.82%24637765.25%762562502164316174
9Wolves3020001079-2201000106601010000013-220.3337111800323422467242254262249225403419315.79%19668.42%050580562.73%41069758.82%24637765.25%762562502164316174
_Since Last GM Reset2615601013903951148300012552233127301001351718370.71290161251083234224769242254262245621591994231293325.58%931484.95%550580562.73%41069758.82%24637765.25%762562502164316174
_Vs Conference2212601012713239127300011451728105301001261511300.68271128199073234224636242254262244921341793551092422.02%831384.34%550580562.73%41069758.82%24637765.25%762562502164316174

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
2637SOL19016125176956215919942308
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
2615610139039
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
148300125522
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
127310013517
Derniers 10 Matchs
WLOTWOTL SOWSOL
611011
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1293325.58%931484.95%5
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
242254262243234224
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
50580562.73%41069758.82%24637765.25%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
762562502164316174


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2019-09-046Moose5Wild4LXXSommaire du Match
5 - 2019-09-0625Moose0Wild6WSommaire du Match
10 - 2019-09-1139Stars4Wild3LXXSommaire du Match
17 - 2019-09-1878Wild1Stars0WSommaire du Match
18 - 2019-09-1991Wild0Stars1LSommaire du Match
24 - 2019-09-25114Eagles1Wild4WSommaire du Match
25 - 2019-09-26128Eagles1Wild7WSommaire du Match
31 - 2019-10-02142Wild1Griffins3LSommaire du Match
32 - 2019-10-03160Wild6IceHogs2WSommaire du Match
33 - 2019-10-04170IceHogs1Wild4WSommaire du Match
36 - 2019-10-07175Wild1IceHogs0WSommaire du Match
37 - 2019-10-08179Condors0Wild7WSommaire du Match
39 - 2019-10-10202Condors1Wild5WSommaire du Match
43 - 2019-10-14221Admirals1Wild0LSommaire du Match
45 - 2019-10-16232Admirals2Wild1LSommaire du Match
46 - 2019-10-17246Wild1Wolves3LSommaire du Match
50 - 2019-10-21261Wild3Admirals0WSommaire du Match
52 - 2019-10-23271Wild5Moose1WSommaire du Match
53 - 2019-10-24277Wild4Moose1WSommaire du Match
55 - 2019-10-26298Griffins0Wild5WSommaire du Match
59 - 2019-10-30315Wild5Eagles4WXSommaire du Match
60 - 2019-10-31330Wild7Eagles0WSommaire du Match
64 - 2019-11-04346Wolves2Wild3WXXSommaire du Match
66 - 2019-11-06358Wolves4Wild3LSommaire du Match
67 - 2019-11-07372Griffins0Wild3WSommaire du Match
71 - 2019-11-11388Wild1Stars2LXXSommaire du Match
73 - 2019-11-13399Wild-Rampage-
75 - 2019-11-15418Wild-Rampage-
80 - 2019-11-20445Heat-Wild-
81 - 2019-11-21461Heat-Wild-
85 - 2019-11-25466IceHogs-Wild-
88 - 2019-11-28493Admirals-Wild-
90 - 2019-11-30505Wolves-Wild-
92 - 2019-12-02514Wild-Wolves-
94 - 2019-12-04527IceHogs-Wild-
96 - 2019-12-06550Wild-IceHogs-
99 - 2019-12-09556Wild-Rampage-
101 - 2019-12-11570Wild-Rampage-
102 - 2019-12-12583Wild-Stars-
104 - 2019-12-14593Gulls-Wild-
108 - 2019-12-18612Reign-Wild-
109 - 2019-12-19623Reign-Wild-
111 - 2019-12-21637IceHogs-Wild-
115 - 2019-12-25662Wild-Admirals-
116 - 2019-12-26676Wild-IceHogs-
122 - 2020-01-01694Wild-Condors-
123 - 2020-01-02710Wild-Gulls-
126 - 2020-01-05715Wild-Barracuda-
129 - 2020-01-08729Rampage-Wild-
130 - 2020-01-09743Rampage-Wild-
137 - 2020-01-16785Wild-IceHogs-
138 - 2020-01-17798Wild-Wolves-
140 - 2020-01-19807Stars-Wild-
142 - 2020-01-21815Barracuda-Wild-
143 - 2020-01-22826Barracuda-Wild-
147 - 2020-01-26849Wild-Barracuda-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
150 - 2020-01-29865Wild-Condors-
151 - 2020-01-30878Wild-Reign-
152 - 2020-01-31887Wild-Reign-
157 - 2020-02-05900Wild-Griffins-
158 - 2020-02-06918Wild-Wolves-
161 - 2020-02-09932Rampage-Wild-
164 - 2020-02-12952Rampage-Wild-
168 - 2020-02-16976Wild-Roadrunners-
169 - 2020-02-17983Wild-Roadrunners-
171 - 2020-02-19992Wild-Heat-
173 - 2020-02-211015Wild-Heat-
175 - 2020-02-231017Griffins-Wild-
178 - 2020-02-261034Stars-Wild-
179 - 2020-02-271046Stars-Wild-
182 - 2020-03-011062Roadrunners-Wild-
183 - 2020-03-021069Roadrunners-Wild-
186 - 2020-03-051091Wild-Admirals-
190 - 2020-03-091109Wild-Griffins-
192 - 2020-03-111123Wolves-Wild-
193 - 2020-03-121132IceHogs-Wild-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
24 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
410,974$ 111,000$ 30,380$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 39,818$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 122 5,727$ 698,694$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1426156010139039511483000125522331273010013517183790161251083234224769242254262245621591994231293325.58%931484.95%550580562.73%41069758.82%24637765.25%762562502164316174
Total Saison Régulière26156010139039511483000125522331273010013517183790161251083234224769242254262245621591994231293325.58%931484.95%550580562.73%41069758.82%24637765.25%762562502164316174