Bruins

GP: 45 | W: 27 | L: 15 | OTL: 3 | P: 57
GF: 121 | GA: 85 | PP%: 12.77% | PK%: 87.42%
DG: Steve Gagné | Morale : 63 | Moyenne d'Équipe : 61
Prochain matchs #684 vs Checkers
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Carter CamperX100.005036906165939160706256555879715424610
2Connor Bunnaman (R)X100.006536925979928858605558605861636475610
3Sam MileticX100.006236916174898360686356595863626375610
4Michael CarconeX100.005038856163928860655959546065636278600
5Liam O'BrienX100.006843715980949556585453565569656023600
6Phillip Di GiuseppeXX100.007938875973736258546057565871667230590
7Giovanni FioreXX100.006036925675908555585354575265635475590
8Zac RinaldoXX100.009452696069605058535459625777704026590
9Cameron HughesX100.005337875954908458615756525765636222580
10Anthony RichardXXX100.005435935863787257615956545865636175580
11Shawn O'Donnell (R)X100.006140805476908553525152545379715478580
12Slater KoekkoekX100.007339846579815063306462715369658375650
13Nate ProsserX100.006636885981746358306056744982733910640
14Carson SoucyX100.007540795592939054305552594569655523630
15William Borgen (R)X100.006836905883897257305453594565636271620
16Gustav Bouramman (R)X100.005936925473787253305251555263626623570
17Luke Green (R)X100.006039825575716854305452544561636479570
Rayé
1Curtis McKenzieX100.006743726181949260686157605975685720630
2Jack Kopacka (R)X100.006535945980827458615654575561636420590
3Steven LorentzX100.007138845788797356585552595465636220590
4Spencer Smallman (R)X100.006340805977726858696252575465636220580
5Yannick VeilleuxXXX100.006441765479898353545152555371665920570
6Joe MorrowX100.007850806574765463307162645673676911640
7Brian StraitX100.006344645279778052305857605580675120600
MOYENNE D'ÉQUIPE100.00653983587683765750585558546965604160
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Christopher Gibson100.00786866827776787776787773776370740
2Callum Booth (R)100.00706664836968706968706963677375680
Rayé
1Jeremy Smith100.00747876707372747372747378844320710
MOYENNE D'ÉQUIPE100.0074716978737274737274737176605571
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Doug Weight75717977747077USA483100,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Tim SchallerBoston BruinsC/LW/RW38141832131604061120367411.67%2177820.48459281601125784162.07%8700000.8203000262
2Connor BunnamanBruins (Bos)C451018286360475710435599.62%2989119.81178171050110343255.86%46900000.6300000223
3Slater KoekkoekBruins (Bos)D4981927-5580865410330607.77%40122825.085495919500011350125.00%400000.4400000214
4Frederick GaudreauBoston BruinsC/LW43817251801710111644946.90%884619.68156271720002340154.78%92000000.5900000031
5Giovanni FioreBruins (Bos)LW/RW45109193140383777165012.99%882518.3543713150000071155.17%5800000.4600000031
6Luke GreenBruins (Bos)D4531619194210571929141610.34%27106823.7423518152000099000.00%000000.3600101001
7Sam MileticBruins (Bos)LW4551419-112053509923745.05%1587119.37156211431011170047.62%8400000.4400000000
8Michael CarconeBruins (Bos)LW45213151211512477327602.74%578817.520336540000401050.48%10500000.3800100111
9William BorgenBruins (Bos)D44112130471555304918202.04%28117226.6510124176000111110100.00%100000.2200002020
10Anthony RichardBruins (Bos)C/LW/RW446511410013314182614.63%763414.431127450001560052.02%24800000.3500000111
11Shawn O'DonnellBruins (Bos)RW45268919531223215186.25%757512.800221380000231062.75%5100000.2800100000
12Carter CamperBruins (Bos)C10156-220413233144.35%520020.070005320000241059.09%13200000.6000000001
13Phillip Di GiuseppeBruins (Bos)LW/RW7336-220177155820.00%013018.70224529000001133.33%300000.9200000110
14Logan ShawBoston BruinsC/RW42463208481925.00%38621.671124140111280071.23%7300001.3801000100
15Nate ProsserBruins (Bos)D1724661201317217189.52%1743025.300001170000048100.00%000000.2800000002
16Joe MorrowBruins (Bos)D2044340411040.00%25226.120221400004000.00%000001.5300000100
17Zac RinaldoBruins (Bos)LW/RW93141002141751417.65%0788.7600000000000075.00%400001.0100000011
18Cameron HughesBruins (Bos)C3101-1001292811.11%03712.3400000000011059.26%2700000.5400000000
19Carson SoucyBruins (Bos)D31010805223450.00%36822.7900011300005010.00%000000.2900000001
20Liam O'BrienBruins (Bos)LW3011-1002211450.00%13913.0300001000010050.00%200000.5100000000
21Gustav BourammanBruins (Bos)D3000-120121120.00%14214.190000000004000.00%000000.0000000000
Stats d'équipe Total ou en Moyenne5498216925167305355255639512976378.62%2271084819.7623436624815632351275615855.51%226800000.4604303112119
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Christopher GibsonBruins (Bos)45271530.9091.87269665849200201.0009450224
2Callum BoothBruins (Bos)10000.8752.312600180000.0000045000
Stats d'équipe Total ou en Moyenne46271530.9081.87272265859280201.00094545224


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Anthony RichardBruins (Bos)C/LW/RW221996-12-20No163 Lbs5 ft10NoNoNo2Pro & Farm500,000$0$0$No500,000$Lien
Brian StraitBruins (Bos)D311988-01-04No206 Lbs6 ft1NoNoNo3Pro & Farm500,000$0$0$No500,000$500,000$Lien
Callum BoothBruins (Bos)G221997-05-21Yes184 Lbs6 ft4NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Cameron HughesBruins (Bos)C221996-10-06No160 Lbs5 ft1NoNoNo3Pro & Farm300,000$0$0$No300,000$300,000$Lien
Carson SoucyBruins (Bos)D241994-07-27No211 Lbs6 ft5NoNoNo3Pro & Farm300,000$0$0$No300,000$300,000$Lien
Carter CamperBruins (Bos)C301988-07-06No176 Lbs5 ft9NoNoNo3Pro & Farm311,002$0$0$No311,002$311,002$Lien
Christopher GibsonBruins (Bos)G261992-12-27No207 Lbs6 ft2NoNoNo4Pro & Farm500,000$0$0$No500,000$500,000$500,000$Lien
Connor BunnamanBruins (Bos)C211998-04-16Yes207 Lbs6 ft1NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Curtis McKenzieBruins (Bos)LW281991-02-22No205 Lbs6 ft2NoNoNo1Pro & Farm500,000$0$0$NoLien
Giovanni FioreBruins (Bos)LW/RW221996-08-13No188 Lbs6 ft1NoNoNo3Pro & Farm300,000$0$0$No300,000$300,000$Lien
Gustav BourammanBruins (Bos)D221997-01-24Yes194 Lbs6 ft0NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Jack KopackaBruins (Bos)LW211998-03-05Yes197 Lbs6 ft2NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Jeremy SmithBruins (Bos)G301989-04-13No177 Lbs6 ft0NoNoNo2Pro & Farm500,000$0$0$No500,000$Lien
Joe MorrowBruins (Bos)D261992-12-09No196 Lbs6 ft0NoNoNo2Pro & Farm500,000$0$0$No500,000$Lien
Liam O'BrienBruins (Bos)LW241994-07-29No215 Lbs6 ft1NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Luke GreenBruins (Bos)D211998-01-12Yes188 Lbs6 ft1NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Michael CarconeBruins (Bos)LW231996-05-19No170 Lbs5 ft9NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Nate ProsserBruins (Bos)D331986-05-07No201 Lbs6 ft2NoNoNo2Pro & Farm500,000$0$0$No500,000$Lien
Phillip Di GiuseppeBruins (Bos)LW/RW251993-10-09No192 Lbs6 ft0NoNoNo3Pro & Farm300,000$0$0$No300,000$300,000$Lien
Sam MileticBruins (Bos)LW221997-05-04No197 Lbs6 ft0NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Shawn O'DonnellBruins (Bos)RW311988-05-28Yes192 Lbs6 ft1NoNoNo1Pro & Farm300,000$0$0$NoLien
Slater KoekkoekBruins (Bos)D251994-02-18No193 Lbs6 ft2NoNoNo3Pro & Farm500,000$0$0$No500,000$500,000$Lien
Spencer SmallmanBruins (Bos)RW221996-09-09Yes198 Lbs6 ft1NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Steven LorentzBruins (Bos)LW231996-04-13No206 Lbs6 ft4NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
William BorgenBruins (Bos)D221996-12-19Yes196 Lbs6 ft3NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Yannick VeilleuxBruins (Bos)C/LW/RW261993-02-22No195 Lbs6 ft2NoNoNo2Pro & Farm300,000$0$0$No300,000$Lien
Zac RinaldoBruins (Bos)LW/RW291990-06-15No192 Lbs5 ft10NoNoNo3Pro & Farm500,000$0$0$No500,000$500,000$Lien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2724.93193 Lbs6 ft13.11367,074$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Sam MileticConnor BunnamanGiovanni Fiore40122
2Michael CarconeCarter CamperPhillip Di Giuseppe30122
3Liam O'BrienCameron HughesZac Rinaldo20122
4Connor BunnamanAnthony RichardShawn O'Donnell10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Slater KoekkoekNate Prosser40122
2Carson SoucyWilliam Borgen30122
3Luke GreenGustav Bouramman20122
4Slater KoekkoekNate Prosser10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Sam MileticConnor BunnamanGiovanni Fiore60122
2Michael CarconeCarter CamperPhillip Di Giuseppe40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Slater KoekkoekNate Prosser60122
2Carson SoucyWilliam Borgen40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Connor BunnamanCarter Camper60122
2Sam MileticMichael Carcone40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Slater KoekkoekNate Prosser60122
2Carson SoucyWilliam Borgen40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Connor Bunnaman60122Slater KoekkoekNate Prosser60122
2Carter Camper40122Carson SoucyWilliam Borgen40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Connor BunnamanCarter Camper60122
2Sam MileticMichael Carcone40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Slater KoekkoekNate Prosser60122
2Carson SoucyWilliam Borgen40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Sam MileticConnor BunnamanGiovanni FioreSlater KoekkoekNate Prosser
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Sam MileticConnor BunnamanGiovanni FioreSlater KoekkoekNate Prosser
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Liam O'Brien, Zac Rinaldo, Shawn O'DonnellLiam O'Brien, Zac RinaldoShawn O'Donnell
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Luke Green, Gustav Bouramman, Carson SoucyLuke GreenGustav Bouramman, Carson Soucy
Tirs de Pénalité
Connor Bunnaman, Carter Camper, Sam Miletic, Michael Carcone, Liam O'Brien
Gardien
#1 : Christopher Gibson, #2 : Callum Booth


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans21100000330110000003211010000001-120.5003470048392956141841144117457233310110.00%8275.00%0906153059.22%669125953.14%31760252.66%1202861977318548286
2Bears31200000610-41010000023-12110000047-320.333610160048392959441841144117711645292414.17%13284.62%0906153059.22%669125953.14%31760252.66%1202861977318548286
3Checkers550000002822633000000152132200000013013101.0002852800448392952454184114411762202811924520.83%120100.00%1906153059.22%669125953.14%31760252.66%1202861977318548286
4Comets10000010321000000000001000001032121.00034700483929522418411441172676145120.00%20100.00%0906153059.22%669125953.14%31760252.66%1202861977318548286
5Devils1010000001-1000000000001010000001-100.0000000048392952041841144117203217500.00%10100.00%0906153059.22%669125953.14%31760252.66%1202861977318548286
6Marlies11000000817000000000001100000081721.0008142200483929546418411441171144124125.00%20100.00%0906153059.22%669125953.14%31760252.66%1202861977318548286
7Penguins3120000046-2211000003301010000013-220.33348120048392956341841144117842053571815.56%18383.33%0906153059.22%669125953.14%31760252.66%1202861977318548286
8Phantoms43001000835220000003122100100052381.0008132101483929510041841144117692133682428.33%12191.67%1906153059.22%669125953.14%31760252.66%1202861977318548286
9Rocket11000000312110000003120000000000021.00035800483929531418411441171756127114.29%30100.00%0906153059.22%669125953.14%31760252.66%1202861977318548286
10Senators1010000014-3000000000001010000014-300.0001230048392953041841144117185620300.00%3233.33%0906153059.22%669125953.14%31760252.66%1202861977318548286
11Sound Tigers724001001013-33120000057-24120010056-150.35710192900483929516241841144117158476110524312.50%28485.71%0906153059.22%669125953.14%31760252.66%1202861977318548286
12Thunderbirds8310121022184310011006515210011016133120.7502240620048392952214184114411716441549537410.81%26388.46%2906153059.22%669125953.14%31760252.66%1202861977318548286
Total45221502330121853620116011105038122511901220714724570.6331212123330548392951278418411441179282554057042353012.77%1592087.42%4906153059.22%669125953.14%31760252.66%1202861977318548286
14Wolf Pack8430001025214412000101014-4431000001578100.625254166004839295183418411441171835984123501020.00%31390.32%0906153059.22%669125953.14%31760252.66%1202861977318548286
_Since Last GM Reset45221502330121853620116011105038122511901220714724570.6331212123330548392951278418411441179282554057042353012.77%1592087.42%4906153059.22%669125953.14%31760252.66%1202861977318548286
_Vs Conference271113011105458-41256000102328-515670110031301270.5005493147014839295652418411441176031712844191481711.49%1061585.85%1906153059.22%669125953.14%31760252.66%1202861977318548286

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
4557OTW1121212333127892825540570405
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
452215233012185
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
2011611105038
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
2511912207147
Derniers 10 Matchs
WLOTWOTL SOWSOL
331210
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2353012.77%1592087.42%4
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
418411441174839295
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
906153059.22%669125953.14%31760252.66%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
1202861977318548286


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2019-09-044Bruins4Wolf Pack1WSommaire du Match
4 - 2019-09-0516Rocket1Bruins3WSommaire du Match
10 - 2019-09-1136Bruins1Wolf Pack2LSommaire du Match
11 - 2019-09-1251Wolf Pack3Bruins4WSommaire du Match
12 - 2019-09-1359Bruins3Thunderbirds2WXXSommaire du Match
17 - 2019-09-1869Bruins2Sound Tigers3LSommaire du Match
18 - 2019-09-1988Sound Tigers2Bruins4WSommaire du Match
25 - 2019-09-26123Bruins3Thunderbirds4LXSommaire du Match
26 - 2019-09-27131Sound Tigers4Bruins1LSommaire du Match
31 - 2019-10-02139Bruins9Checkers0WSommaire du Match
32 - 2019-10-03154Bruins4Checkers0WSommaire du Match
38 - 2019-10-09184Penguins1Bruins2WSommaire du Match
39 - 2019-10-10194Bruins0Sound Tigers1LSommaire du Match
40 - 2019-10-11206Penguins2Bruins1LSommaire du Match
45 - 2019-10-16227Phantoms0Bruins1WSommaire du Match
46 - 2019-10-17245Americans2Bruins3WSommaire du Match
50 - 2019-10-21257Bruins4Wolf Pack2WSommaire du Match
53 - 2019-10-24281Bruins3Phantoms1WSommaire du Match
54 - 2019-10-25292Bruins1Penguins3LSommaire du Match
59 - 2019-10-30311Checkers0Bruins8WSommaire du Match
60 - 2019-10-31322Bruins3Sound Tigers1WSommaire du Match
61 - 2019-11-01332Checkers0Bruins4WSommaire du Match
64 - 2019-11-04341Bruins8Marlies1WSommaire du Match
66 - 2019-11-06353Bruins0Americans1LSommaire du Match
67 - 2019-11-07365Bruins1Senators4LSommaire du Match
71 - 2019-11-11383Bruins3Comets2WXXSommaire du Match
73 - 2019-11-13393Sound Tigers1Bruins0LSommaire du Match
74 - 2019-11-14408Bears3Bruins2LSommaire du Match
78 - 2019-11-18424Bruins6Wolf Pack2WSommaire du Match
80 - 2019-11-20438Bruins0Devils1LSommaire du Match
81 - 2019-11-21459Bruins4Thunderbirds2WSommaire du Match
87 - 2019-11-27478Bruins2Phantoms1WXSommaire du Match
88 - 2019-11-28488Bruins3Bears2WSommaire du Match
89 - 2019-11-29501Bruins1Bears5LSommaire du Match
94 - 2019-12-04520Phantoms1Bruins2WSommaire du Match
95 - 2019-12-05537Bruins5Thunderbirds3WSommaire du Match
96 - 2019-12-06546Wolf Pack3Bruins1LSommaire du Match
101 - 2019-12-11565Wolf Pack4Bruins5WXXSommaire du Match
102 - 2019-12-12581Bruins1Thunderbirds2LSommaire du Match
103 - 2019-12-13588Thunderbirds1Bruins2WSommaire du Match
108 - 2019-12-18607Thunderbirds3Bruins2LXSommaire du Match
109 - 2019-12-19620Bruins0Sound Tigers1LXSommaire du Match
110 - 2019-12-20634Wolf Pack4Bruins0LSommaire du Match
115 - 2019-12-25658Checkers2Bruins3WSommaire du Match
116 - 2019-12-26678Thunderbirds1Bruins2WXSommaire du Match
122 - 2020-01-01684Bruins-Checkers-
123 - 2020-01-02699Bruins-Checkers-
129 - 2020-01-08724Sound Tigers-Bruins-
130 - 2020-01-09736Bruins-Sound Tigers-
131 - 2020-01-10752Crunch-Bruins-
136 - 2020-01-15773Marlies-Bruins-
137 - 2020-01-16786Checkers-Bruins-
138 - 2020-01-17796Thunderbirds-Bruins-
143 - 2020-01-22821Sound Tigers-Bruins-
144 - 2020-01-23830Bruins-Wolf Pack-
145 - 2020-01-24842Wolf Pack-Bruins-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
150 - 2020-01-29861Penguins-Bruins-
151 - 2020-01-30874Bruins-Thunderbirds-
152 - 2020-01-31882Thunderbirds-Bruins-
157 - 2020-02-05901Bears-Bruins-
158 - 2020-02-06912Bears-Bruins-
159 - 2020-02-07925Thunderbirds-Bruins-
164 - 2020-02-12949Bruins-Phantoms-
165 - 2020-02-13962Bruins-Penguins-
169 - 2020-02-17980Bruins-Rocket-
171 - 2020-02-19986Senators-Bruins-
172 - 2020-02-201000Devils-Bruins-
176 - 2020-02-241020Bruins-Penguins-
178 - 2020-02-261027Bruins-Crunch-
179 - 2020-02-271040Bruins-Bears-
185 - 2020-03-041075Sound Tigers-Bruins-
186 - 2020-03-051087Bruins-Sound Tigers-
187 - 2020-03-061101Comets-Bruins-
192 - 2020-03-111119Phantoms-Bruins-
193 - 2020-03-121135Bruins-Thunderbirds-
194 - 2020-03-131143Thunderbirds-Bruins-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
18 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
133,997$ 99,110$ 21,000$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 72,674$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 75 1,026$ 76,950$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1445221502330121853620116011105038122511901220714724571212123330548392951278418411441179282554057042353012.77%1592087.42%4906153059.22%669125953.14%31760252.66%1202861977318548286
Total Saison Régulière45221502330121853620116011105038122511901220714724571212123330548392951278418411441179282554057042353012.77%1592087.42%4906153059.22%669125953.14%31760252.66%1202861977318548286