Moose

GP: 71 | W: 9 | L: 59 | OTL: 3 | P: 21
GF: 147 | GA: 357 | PP%: 13.75% | PK%: 76.39%
DG: Luc Forget | Morale : 9 | Moyenne d'Équipe : 58
Prochain matchs #1084 vs Heat
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Ryan OlsenX100.005939835875939157595656585769656068600
2Justin KirklandXX100.006238845680949555615652565465636230590
3Filip ChlapikX100.005636925876846957635659575863627325580
4Trent FredericX100.006245795681786855635456575361637968580
5Patrick BajkovX100.005736915572777154515254535463626368560
6Troy BourkeX100.005336925462787253585451524869656368550
7John RamageX100.005839835772949556305653544675685168620
Rayé
MOYENNE D'ÉQUIPE100.00583886567485805555555455536664645658
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Rayé
MOYENNE D'ÉQUIPE0.000000000000000000
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Bryan Trottier57476162787363CAN6041,000,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Chris ButlerWinnipeg JetsD61142842-3110010118107122458411.48%127106817.51751260115000085100.00%000010.7900200325
2Justin KirklandMoose (Wpg)LW/RW7125833-1039587751653810515.15%236178.7000000000002055.81%4300001.0700100550
3Dalton ProutWinnipeg JetsD4182432-2913810176718638659.30%9583020.2654954103000076010.00%000000.7700100510
4Filip ChlapikMoose (Wpg)C2303000411931133.33%04723.6410111000150144.68%4700011.2701000100
Stats d'équipe Total ou en Moyenne1755060110-702772538526438212426513.09%245256314.651392211522100011673250.00%9000020.86014001485
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Matiss KivlenieksWinnipeg Jets42200.8933.5322100131210001.000344100
Stats d'équipe Total ou en Moyenne42200.8933.5322100131210001.000344100


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Filip ChlapikMoose (Wpg)C221997-06-03No196 Lbs6 ft1NoNoNo3Pro & Farm500,000$0$0$No500,000$500,000$Lien
John RamageMoose (Wpg)D281991-02-07No190 Lbs6 ft0NoNoNo3Pro & Farm500,000$0$0$No500,000$500,000$Lien
Justin KirklandMoose (Wpg)LW/RW221996-08-02No183 Lbs6 ft3NoNoNo2Pro & Farm500,000$0$0$No500,000$Lien
Patrick BajkovMoose (Wpg)RW211997-11-27No186 Lbs6 ft0NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Ryan OlsenMoose (Wpg)C251994-03-25No187 Lbs6 ft1NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Trent FredericMoose (Wpg)C211998-02-11No203 Lbs6 ft2NoNoNo3Pro & Farm500,000$0$0$No500,000$500,000$Lien
Troy BourkeMoose (Wpg)LW251994-03-30No156 Lbs5 ft10NoNoNo2Pro & Farm300,000$0$0$No300,000$Lien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
723.43186 Lbs6 ft13.00414,286$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
140122
230122
3Justin Kirkland20122
410122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
140122
230122
320122
410122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
160122
240122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
240122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
160122
240122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
240122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
16012260122
24012240122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
160122
240122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
240122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, , ,
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, , ,
Tirs de Pénalité
, , , ,
Gardien
#1 : , #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals80800000653-4740400000324-2140400000329-2600.0006111700674532312057758359416350113801362328.70%401270.00%0539173131.14%685230629.71%337111230.31%12268312258510792330
2Condors40400000823-1520200000411-720200000412-800.00081523006745323835775835941617141386812216.67%18666.67%0539173131.14%685230629.71%337111230.31%12268312258510792330
3Eagles422000001818021100000118321100000710-340.500183452006745323196577583594161863536891218.33%17382.35%0539173131.14%685230629.71%337111230.31%12268312258510792330
4Griffins724001002123-2413000001113-2311001001010050.3572137580067453231915775835941621367581182114.76%281064.29%0539173131.14%685230629.71%337111230.31%12268312258510792330
5Gulls40400000718-112020000029-72020000059-400.000712190067453231165775835941617354306920315.00%14285.71%0539173131.14%685230629.71%337111230.31%12268312258510792330
6Heat20200000412-80000000000020200000412-800.000461000674532356577583594161142422544125.00%90100.00%0539173131.14%685230629.71%337111230.31%12268312258510792330
7IceHogs412001001518-32100010098120200000610-430.37515284300674532318857758359416183503511112433.33%14285.71%0539173131.14%685230629.71%337111230.31%12268312258510792330
8Marlies412010001619-32110000058-3201010001111040.50016324800674532317557758359416181585610714321.43%19289.47%0539173131.14%685230629.71%337111230.31%12268312258510792330
9Rampage807000011339-2640400000717-1040300001622-1610.06313263900674532316257758359416348926614726623.08%33875.76%0539173131.14%685230629.71%337111230.31%12268312258510792330
10Rocket40400000623-1720200000310-720200000313-1000.00061218006745323915775835941616346347316212.50%16475.00%0539173131.14%685230629.71%337111230.31%12268312258510792330
11Senators40301000619-132010100055020200000114-1320.25061016006745323635775835941615336476120315.00%20860.00%0539173131.14%685230629.71%337111230.31%12268312258510792330
12Stars80800000743-3640400000424-2040400000319-1600.0007121900674532314557758359416330114691202514.00%32487.50%0539173131.14%685230629.71%337111230.31%12268312258510792330
Total7165902211147357-210364300110073165-92352290111174192-118210.148147267414106745323176457758359416292283267513032403313.75%3057276.39%0539173131.14%685230629.71%337111230.31%12268312258510792330
14Wild40300010719-122020000029-720100010510-520.2507815006745323705775835941613348496310110.00%20955.00%0539173131.14%685230629.71%337111230.31%12268312258510792330
15Wolves606000001330-1740400000719-1220200000611-500.0001324371067453231085775835941622454558725312.00%25292.00%0539173131.14%685230629.71%337111230.31%12268312258510792330
_Since Last GM Reset7165902211147357-210364300110073165-92352290111174192-118210.148147267414106745323176457758359416292283267513032403313.75%3057276.39%0539173131.14%685230629.71%337111230.31%12268312258510792330
_Vs Conference807010001337-2440301000714-740400000623-1720.12513223500674532317957758359416326907713040615.00%341070.59%0539173131.14%685230629.71%337111230.31%12268312258510792330

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
7121L514726741417642922832675130310
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
716592211147357
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
36430110073165
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
35229111174192
Derniers 10 Matchs
WLOTWOTL SOWSOL
190000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2403313.75%3057276.39%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
577583594166745323
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
539173131.14%685230629.71%337111230.31%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
12268312258510792330


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
3 - 2019-09-046Moose5Wild4WXXSommaire du Match
5 - 2019-09-0625Moose0Wild6LSommaire du Match
10 - 2019-09-1138Senators2Moose1LSommaire du Match
11 - 2019-09-1249Senators3Moose4WXSommaire du Match
17 - 2019-09-1877Rampage7Moose3LSommaire du Match
19 - 2019-09-2097Rampage3Moose1LSommaire du Match
25 - 2019-09-26122Moose2Admirals8LSommaire du Match
26 - 2019-09-27135Moose2IceHogs3LSommaire du Match
28 - 2019-09-29136Moose0Admirals4LSommaire du Match
31 - 2019-10-02148Wolves2Moose1LSommaire du Match
32 - 2019-10-03158Wolves6Moose4LSommaire du Match
37 - 2019-10-08180Griffins3Moose2LSommaire du Match
39 - 2019-10-10197Griffins5Moose3LSommaire du Match
42 - 2019-10-13211Moose3Rampage4LXXSommaire du Match
43 - 2019-10-14220Moose1Stars4LSommaire du Match
46 - 2019-10-17241Moose3Griffins4LSommaire du Match
47 - 2019-10-18251Moose4Wolves5LSommaire du Match
52 - 2019-10-23271Wild5Moose1LSommaire du Match
53 - 2019-10-24277Wild4Moose1LSommaire du Match
57 - 2019-10-28306Moose1Gulls3LSommaire du Match
59 - 2019-10-30316Moose4Gulls6LSommaire du Match
60 - 2019-10-31331Moose2Condors5LSommaire du Match
64 - 2019-11-04347Moose2Condors7LSommaire du Match
66 - 2019-11-06361Moose2Heat6LSommaire du Match
67 - 2019-11-07373Moose2Heat6LSommaire du Match
73 - 2019-11-13397Marlies3Moose4WSommaire du Match
74 - 2019-11-14405Marlies5Moose1LSommaire du Match
80 - 2019-11-20442Griffins4Moose3LSommaire du Match
81 - 2019-11-21451Griffins1Moose3WSommaire du Match
89 - 2019-11-29500Eagles3Moose7WSommaire du Match
90 - 2019-11-30506Eagles5Moose4LSommaire du Match
92 - 2019-12-02515Moose1Rampage5LSommaire du Match
94 - 2019-12-04526Moose1Stars5LSommaire du Match
95 - 2019-12-05541Moose1Stars5LSommaire du Match
100 - 2019-12-10560Rocket6Moose3LSommaire du Match
102 - 2019-12-12578Rocket4Moose0LSommaire du Match
104 - 2019-12-14592Admirals6Moose0LSommaire du Match
106 - 2019-12-16600Admirals6Moose1LSommaire du Match
109 - 2019-12-19617Rampage5Moose2LSommaire du Match
110 - 2019-12-20633Rampage2Moose1LSommaire du Match
113 - 2019-12-23648Moose5Griffins3WSommaire du Match
115 - 2019-12-25663Moose4IceHogs7LSommaire du Match
116 - 2019-12-26668Moose0Admirals7LSommaire du Match
122 - 2020-01-01690Moose1Admirals10LSommaire du Match
123 - 2020-01-02707Moose2Wolves6LSommaire du Match
127 - 2020-01-06717Moose2Griffins3LXSommaire du Match
130 - 2020-01-09742Stars3Moose2LSommaire du Match
131 - 2020-01-10750Stars7Moose1LSommaire du Match
134 - 2020-01-13766Wolves5Moose1LSommaire du Match
136 - 2020-01-15776Wolves6Moose1LSommaire du Match
138 - 2020-01-17795Admirals4Moose1LSommaire du Match
139 - 2020-01-18806Admirals8Moose1LSommaire du Match
141 - 2020-01-20808Moose5Marlies6LSommaire du Match
143 - 2020-01-22825Moose2Rocket5LSommaire du Match
144 - 2020-01-23828Moose1Rocket8LSommaire du Match
148 - 2020-01-27850Moose6Marlies5WXSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
150 - 2020-01-29860Moose1Senators6LSommaire du Match
151 - 2020-01-30872Moose0Senators8LSommaire du Match
158 - 2020-02-06911IceHogs3Moose5WSommaire du Match
159 - 2020-02-07924IceHogs5Moose4LXSommaire du Match
162 - 2020-02-10940Stars5Moose0LSommaire du Match
164 - 2020-02-12951Stars9Moose1LSommaire du Match
166 - 2020-02-14967Gulls4Moose0LSommaire du Match
168 - 2020-02-16975Gulls5Moose2LSommaire du Match
171 - 2020-02-19991Moose2Eagles6LSommaire du Match
172 - 2020-02-201005Moose5Eagles4WSommaire du Match
176 - 2020-02-241024Moose0Stars5LSommaire du Match
178 - 2020-02-261035Moose2Rampage6LSommaire du Match
179 - 2020-02-271050Moose0Rampage7LSommaire du Match
182 - 2020-03-011061Condors5Moose1LSommaire du Match
183 - 2020-03-021068Condors6Moose3LSommaire du Match
186 - 2020-03-051084Heat-Moose-
187 - 2020-03-061099Heat-Moose-
192 - 2020-03-111118Moose-Griffins-
193 - 2020-03-121137Moose-Wolves-
194 - 2020-03-131148Moose-Wolves-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
2 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
981,578$ 29,000$ 0$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 38,214$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 11 5,304$ 58,344$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
147165902211147357-210364300110073165-92352290111174192-11821147267414106745323176457758359416292283267513032403313.75%3057276.39%0539173131.14%685230629.71%337111230.31%12268312258510792330
Total Saison Régulière7165902211147357-210364300110073165-92352290111174192-11821147267414106745323176457758359416292283267513032403313.75%3057276.39%0539173131.14%685230629.71%337111230.31%12268312258510792330