Thunderbirds

GP: 46 | W: 24 | L: 16 | OTL: 6 | P: 54
GF: 99 | GA: 100 | PP%: 11.76% | PK%: 85.71%
DG: Yannick Ferland | Morale : 53 | Moyenne d'Équipe : 63
Prochain matchs #687 vs Wolf Pack
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Mason AppletonX100.006437896679736466586763656265645665630
2Taylor Raddysh (R)X100.007237886387938861536056625861637768630
3David UllstromX100.006437886379817362686159605678705557620
4Trevor SmithX100.006237875976908458625654575584745164610
5Alexander NylanderXXX100.005636926276816763596260565861638764610
6Anthony PelusoX100.006445795588716354525653575578704762580
7Jens LookeX100.005735935573928854565253555463626664580
8Tyler WotherspoonX100.006836905682939155305651574571666164630
9Andrej SekeraX100.005736926374765962306654615382734664620
Rayé
MOYENNE D'ÉQUIPE100.00633789607983755952605659557167616461
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Zane McIntyre100.00768078827574767574767573774664740
2Philippe Desrosiers100.00747270767372747372747367715268710
Rayé
MOYENNE D'ÉQUIPE100.0075767479747375747375747074496673
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Alain Nasreddine63606061656082CAN4341,000,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1David UllstromThunderbirds (Flo)C4624234776515961422076113511.59%20111824.323811291550002706454.45%101200010.8404120662
2Alexander NylanderThunderbirds (Flo)C/LW/RW4611263792204758109327810.09%38106923.2526815148000003145.16%9300100.6901000601
3Jens LookeThunderbirds (Flo)RW4615223702405277189491497.94%18112324.4327937172000004146.51%8600000.6601000462
4Mason AppletonThunderbirds (Flo)C46151227-2315681321474210410.20%26113524.682681914600011331245.21%115900000.4804001214
5Taylor RaddyshThunderbirds (Flo)RW46121325-3641010891132381049.09%41111224.193252214900001333341.60%37500000.4504101252
6Anthony PelusoThunderbirds (Flo)RW4681624-37620944271324211.27%6096521.0065114815400000119.09%1100000.5001121301
7Andrej SekeraThunderbirds (Flo)D4622123026041765913513.39%60111224.1924649152000092100.00%000000.4100000022
8Tyler WotherspoonThunderbirds (Flo)D4611718588083436314301.59%53112224.3914539163000071100.00%000000.3200000101
9Trevor SmithThunderbirds (Flo)C465914110047758536525.88%1470515.341126220002782049.66%43500000.4012000103
10Taro HiroseFlorida PanthersLW2112-2203141425.00%24522.671011300001000.00%200000.8800000000
Stats d'équipe Total ou en Moyenne41694160254124085063973710663187498.82%332951122.8623436626512690005580221248.22%317300110.53117343252018
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Zane McIntyreThunderbirds (Flo)46241660.9182.062796249611720210.82417460344
Stats d'équipe Total ou en Moyenne46241660.9182.062796249611720210.82417460344


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Alexander NylanderThunderbirds (Flo)C/LW/RW211998-03-02No192 Lbs6 ft1NoNoNo2Pro & Farm900,000$0$0$No900,000$Lien
Andrej SekeraThunderbirds (Flo)D331986-06-08No200 Lbs6 ft0NoNoNo1Pro & Farm4,785,001$0$0$NoLien
Anthony PelusoThunderbirds (Flo)RW301989-04-18No225 Lbs6 ft3NoNoNo1Pro & Farm300,000$0$0$NoLien
David UllstromThunderbirds (Flo)C301989-04-22No195 Lbs6 ft2NoNoNo1Pro & Farm300,000$0$0$NoLien
Jens LookeThunderbirds (Flo)RW221997-04-11No180 Lbs6 ft1NoNoNo3Pro & Farm300,000$0$0$No300,000$300,000$Lien
Mason AppletonThunderbirds (Flo)C231996-01-15No193 Lbs6 ft2NoNoNo3Pro & Farm300,000$0$0$No300,000$300,000$Lien
Philippe DesrosiersThunderbirds (Flo)G231995-08-16No195 Lbs6 ft1NoNoNo1Pro & Farm500,000$0$0$NoLien
Taylor RaddyshThunderbirds (Flo)RW211998-02-18Yes216 Lbs6 ft3NoNoNo4Pro & Farm900,000$0$0$No900,000$900,000$900,000$Lien
Trevor SmithThunderbirds (Flo)C341985-02-08No195 Lbs6 ft1NoNoNo2Pro & Farm500,000$0$0$No500,000$Lien
Tyler WotherspoonThunderbirds (Flo)D261993-03-12No207 Lbs6 ft2NoNoNo4Pro & Farm300,000$0$0$No300,000$300,000$300,000$Lien
Zane McIntyreThunderbirds (Flo)G261992-08-20No206 Lbs6 ft2NoNoNo1Pro & Farm300,000$0$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1126.27200 Lbs6 ft22.09853,182$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Alexander NylanderMason AppletonTaylor Raddysh40122
2David UllstromJens Looke30122
3Mason AppletonTrevor SmithAnthony Peluso20122
4David UllstromTaylor RaddyshTrevor Smith10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Tyler WotherspoonAndrej Sekera40122
2Anthony Peluso30122
3Tyler WotherspoonAndrej Sekera20122
4Alexander Nylander10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Alexander NylanderMason AppletonTaylor Raddysh60122
2David UllstromJens Looke40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Tyler WotherspoonAndrej Sekera60122
2Anthony Peluso40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Mason AppletonTaylor Raddysh60122
2David UllstromTrevor Smith40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Tyler WotherspoonAndrej Sekera60122
240122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Mason Appleton60122Tyler WotherspoonAndrej Sekera60122
2Taylor Raddysh4012240122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Mason AppletonTaylor Raddysh60122
2David UllstromTrevor Smith40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Tyler WotherspoonAndrej Sekera60122
240122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Alexander NylanderMason AppletonTaylor RaddyshTyler WotherspoonAndrej Sekera
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Alexander NylanderMason AppletonTaylor RaddyshTyler WotherspoonAndrej Sekera
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Jens Looke, Alexander Nylander, Jens Looke, Alexander Nylander
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Tyler Wotherspoon, Andrej Sekera, Tyler WotherspoonAndrej Sekera,
Tirs de Pénalité
Mason Appleton, Taylor Raddysh, David Ullstrom, Trevor Smith, Alexander Nylander
Gardien
#1 : Zane McIntyre, #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans1010000002-21010000002-20000000000000.00000000363224722376380339362381216600.00%6266.67%0633139245.47%651143145.49%30964348.06%10647521186335548264
2Bears40301000612-62020000026-42010100046-220.25061016003632247973763803393611335645210110.00%17194.12%0633139245.47%651143145.49%30964348.06%10647521186335548264
3Bruins813021011822-4512010011316-33010110056-180.50018304810363224716437638033936221847612426311.54%37489.19%0633139245.47%651143145.49%30964348.06%10647521186335548264
4Checkers11000000303110000003030000000000021.0003580136322474337638033936178620400.00%30100.00%0633139245.47%651143145.49%30964348.06%10647521186335548264
5Comets22000000413110000001011100000031241.00047110136322475837638033936541282613323.08%40100.00%0633139245.47%651143145.49%30964348.06%10647521186335548264
6Crunch40300100611-52010010035-22020000036-310.125681400363224784376380339361134137642000.00%15193.33%0633139245.47%651143145.49%30964348.06%10647521186335548264
7Devils1000000134-11000000134-10000000000010.5003690036322472837638033936244212600.00%110.00%0633139245.47%651143145.49%30964348.06%10647521186335548264
8Penguins43100000954321000007431100000021160.75091726013632247108376380339369933376230413.33%15193.33%0633139245.47%651143145.49%30964348.06%10647521186335548264
9Phantoms6320100014122311010007613210000076180.6671422360036322471363763803393613448399422522.73%16662.50%0633139245.47%651143145.49%30964348.06%10647521186335548264
10Rocket31002000963110000003212000200064261.0009182700363224778376380339368826275316318.75%10370.00%0633139245.47%651143145.49%30964348.06%10647521186335548264
11Sound Tigers74100110171254300010085331100010972110.7861726430136322471913763803393614747781171815.56%31487.10%0633139245.47%651143145.49%30964348.06%10647521186335548264
Total4617160631399100-12511802202525112168041114749-2540.5879916726614363224711143763803393611733854287122042411.76%1752585.71%0633139245.47%651143145.49%30964348.06%10647521186335548264
13Wolf Pack522000011013-31100000021141200001812-450.5001018280036322471053763803393614039427233412.12%20290.00%0633139245.47%651143145.49%30964348.06%10647521186335548264
_Since Last GM Reset4617160631399100-12511802202525112168041114749-2540.5879916726614363224711143763803393611733854287122042411.76%1752585.71%0633139245.47%651143145.49%30964348.06%10647521186335548264
_Vs Conference7410200016974310000074331002000954120.85716304602363224720137638033936182545311539615.38%23578.26%0633139245.47%651143145.49%30964348.06%10647521186335548264

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
4654OTL1991672661114117338542871214
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
461716631399100
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
2511822025251
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
216841114749
Derniers 10 Matchs
WLOTWOTL SOWSOL
441100
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
2042411.76%1752585.71%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
376380339363632247
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
633139245.47%651143145.49%30964348.06%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
10647521186335548264


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
4 - 2019-09-0514Thunderbirds2Penguins1WSommaire du Match
10 - 2019-09-1135Thunderbirds1Phantoms4LSommaire du Match
11 - 2019-09-1252Phantoms2Thunderbirds3WXSommaire du Match
12 - 2019-09-1359Bruins3Thunderbirds2LXXSommaire du Match
17 - 2019-09-1876Thunderbirds4Rocket3WXSommaire du Match
18 - 2019-09-1982Thunderbirds2Rocket1WXSommaire du Match
25 - 2019-09-26123Bruins3Thunderbirds4WXSommaire du Match
26 - 2019-09-27132Wolf Pack1Thunderbirds2WSommaire du Match
31 - 2019-10-02144Sound Tigers1Thunderbirds2WSommaire du Match
32 - 2019-10-03155Thunderbirds1Sound Tigers2LSommaire du Match
38 - 2019-10-09185Thunderbirds2Phantoms1WSommaire du Match
39 - 2019-10-10195Thunderbirds0Bears3LSommaire du Match
43 - 2019-10-14214Penguins2Thunderbirds4WSommaire du Match
45 - 2019-10-16229Americans2Thunderbirds0LSommaire du Match
46 - 2019-10-17244Phantoms3Thunderbirds1LSommaire du Match
52 - 2019-10-23269Penguins2Thunderbirds1LSommaire du Match
53 - 2019-10-24283Crunch2Thunderbirds1LSommaire du Match
54 - 2019-10-25291Thunderbirds4Sound Tigers3WXXSommaire du Match
57 - 2019-10-28303Sound Tigers1Thunderbirds3WSommaire du Match
60 - 2019-10-31323Thunderbirds4Bears3WXSommaire du Match
61 - 2019-11-01333Sound Tigers3Thunderbirds2LXSommaire du Match
66 - 2019-11-06349Thunderbirds3Comets1WSommaire du Match
67 - 2019-11-07368Checkers0Thunderbirds3WSommaire du Match
68 - 2019-11-08377Devils4Thunderbirds3LXXSommaire du Match
71 - 2019-11-11385Penguins0Thunderbirds2WSommaire du Match
74 - 2019-11-14403Thunderbirds4Sound Tigers2WSommaire du Match
75 - 2019-11-15417Bears4Thunderbirds1LSommaire du Match
78 - 2019-11-18429Crunch3Thunderbirds2LXSommaire du Match
80 - 2019-11-20440Comets0Thunderbirds1WSommaire du Match
81 - 2019-11-21459Bruins4Thunderbirds2LSommaire du Match
87 - 2019-11-27480Sound Tigers0Thunderbirds1WSommaire du Match
88 - 2019-11-28489Thunderbirds1Crunch3LSommaire du Match
89 - 2019-11-29499Thunderbirds2Wolf Pack3LSommaire du Match
94 - 2019-12-04523Thunderbirds3Wolf Pack4LXXSommaire du Match
95 - 2019-12-05537Bruins5Thunderbirds3LSommaire du Match
96 - 2019-12-06547Phantoms1Thunderbirds3WSommaire du Match
101 - 2019-12-11566Bears2Thunderbirds1LSommaire du Match
102 - 2019-12-12581Bruins1Thunderbirds2WSommaire du Match
103 - 2019-12-13588Thunderbirds1Bruins2LSommaire du Match
106 - 2019-12-16597Thunderbirds4Phantoms1WSommaire du Match
108 - 2019-12-18607Thunderbirds3Bruins2WXSommaire du Match
109 - 2019-12-19619Thunderbirds2Wolf Pack1WSommaire du Match
111 - 2019-12-21639Rocket2Thunderbirds3WSommaire du Match
113 - 2019-12-23646Thunderbirds1Wolf Pack4LSommaire du Match
115 - 2019-12-25655Thunderbirds2Crunch3LSommaire du Match
116 - 2019-12-26678Thunderbirds1Bruins2LXSommaire du Match
122 - 2020-01-01687Wolf Pack-Thunderbirds-
123 - 2020-01-02704Comets-Thunderbirds-
127 - 2020-01-06718Bears-Thunderbirds-
129 - 2020-01-08725Thunderbirds-Americans-
130 - 2020-01-09735Thunderbirds-Marlies-
136 - 2020-01-15772Checkers-Thunderbirds-
137 - 2020-01-16788Marlies-Thunderbirds-
138 - 2020-01-17796Thunderbirds-Bruins-
143 - 2020-01-22824Thunderbirds-Wolf Pack-
144 - 2020-01-23831Thunderbirds-Sound Tigers-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
150 - 2020-01-29862Wolf Pack-Thunderbirds-
151 - 2020-01-30874Bruins-Thunderbirds-
152 - 2020-01-31882Thunderbirds-Bruins-
157 - 2020-02-05905Thunderbirds-Devils-
158 - 2020-02-06914Wolf Pack-Thunderbirds-
159 - 2020-02-07925Thunderbirds-Bruins-
162 - 2020-02-10935Thunderbirds-Bears-
164 - 2020-02-12944Thunderbirds-Comets-
166 - 2020-02-14969Thunderbirds-Sound Tigers-
171 - 2020-02-19987Devils-Thunderbirds-
172 - 2020-02-201001Rocket-Thunderbirds-
173 - 2020-02-211010Thunderbirds-Penguins-
178 - 2020-02-261031Thunderbirds-Devils-
179 - 2020-02-271047Thunderbirds-Penguins-
183 - 2020-03-021065Wolf Pack-Thunderbirds-
186 - 2020-03-051086Thunderbirds-Checkers-
187 - 2020-03-061097Thunderbirds-Checkers-
192 - 2020-03-111120Sound Tigers-Thunderbirds-
193 - 2020-03-121135Bruins-Thunderbirds-
194 - 2020-03-131143Thunderbirds-Bruins-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
13 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
670,984$ 93,850$ 42,250$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 57,649$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 75 5,638$ 422,850$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
144617160631399100-12511802202525112168041114749-2549916726614363224711143763803393611733854287122042411.76%1752585.71%0633139245.47%651143145.49%30964348.06%10647521186335548264
Total Saison Régulière4617160631399100-12511802202525112168041114749-2549916726614363224711143763803393611733854287122042411.76%1752585.71%0633139245.47%651143145.49%30964348.06%10647521186335548264