Bears

GP: 10 | W: 5 | L: 5 | OTL: 0 | P: 10
GF: 28 | GA: 28 | PP%: 15.09% | PK%: 81.58%
DG: Mathieu Girard | Morale : 50 | Moyenne d'Équipe : 62
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Jason DickinsonXX100.008243806580748064766761736267667752660
2Paul ThompsonX100.006343726277949361645960586179815452630
3Kyle CliffordX100.008578656383678562546164566375706352630
4Brett SutterX100.006138856074939059645858575980725352620
5Anton BlidhX100.007338865675867355535654655267645552600
6Dennis YanX100.006239825977908557545355565263626352590
7Reid DukeX100.005938845673857956585553545065636252580
8Rich CluneX100.006338845673666454535152535774714852560
9Kyle WoodX100.008638855898939156306052634665636252660
10Sami NikuX100.005637896473777163306858614865635652620
11Michael KaplaX100.006136925674939054305852534669656052610
12Trevor MurphyX100.005140785866928957305853564867646152600
Rayé
MOYENNE D'ÉQUIPE100.00674282597784835850595659547067605261
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Vitek Vanecek100.00777876747675777675777665695348720
Rayé
MOYENNE D'ÉQUIPE100.0077787674767577767577766569534872
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Jay Leach73676657605786USA394100,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Sami NikuBears (Was)D1031114518017281861116.67%2622722.800111037000026000.00%000001.2300000003
2Anton BlidhBears (Was)LW105712360192345133511.11%423823.863141244000080046.15%1300001.0100000100
3Jason DickinsonBears (Was)C/LW10561112025345514289.09%623723.70123836000070061.90%16800000.9300000020
4Kyle CliffordBears (Was)LW1065112200311747143012.77%421021.072138330000242044.29%7000001.0400000201
5Brett SutterBears (Was)C1045914014435314277.55%020120.12033946000000056.67%24000000.8900000011
6Trevor MurphyBears (Was)D10279-460151020101210.00%1621321.331561245000029200.00%000000.8400000010
7Michael KaplaBears (Was)D10112-2180171652320.00%1214814.860000000008000.00%000000.2700000000
8Reid DukeBears (Was)C100112000122160.00%0494.9500000000000052.38%6300000.4000000000
Stats d'équipe Total ou en Moyenne8026436987401381832457415210.61%68152619.09713205924400001044055.96%55400000.9000000345
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Vitek VanecekBears (Was)105500.8992.6856043252470200.0000100210
Stats d'équipe Total ou en Moyenne105500.8992.6856043252470200.0000100210


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat StatusType Salaire Actuel Cap Salariale Cap Salariale Restant Exclus du Cap Salarial Link
Anton BlidhBears (Was)LW241995-03-14No201 Lbs6 ft0NoNoNo1Avec RestrictionPro & Farm300,000$0$0$NoLien
Brett SutterBears (Was)C321987-06-02No200 Lbs6 ft0NoNoNo2Sans RestrictionPro & Farm300,000$0$0$NoLien
Dennis YanBears (Was)LW221997-04-14No197 Lbs6 ft1NoNoNo3Contrat d'EntréePro & Farm500,000$0$0$NoLien
Jason DickinsonBears (Was)C/LW241995-07-04No200 Lbs6 ft2NoNoNo1Avec RestrictionPro & Farm900,000$0$0$NoLien
Kyle CliffordBears (Was)LW281991-01-13No211 Lbs6 ft2NoNoNo1Sans RestrictionPro & Farm300,000$0$0$NoLien
Kyle WoodBears (Was)D231996-05-04No235 Lbs6 ft7NoNoNo2Avec RestrictionPro & Farm500,000$0$0$NoLien
Michael KaplaBears (Was)D241994-09-19No200 Lbs6 ft0NoNoNo3Avec RestrictionPro & Farm300,000$0$0$NoLien
Paul ThompsonBears (Was)RW301988-11-30No200 Lbs6 ft1NoNoNo4Sans RestrictionPro & Farm500,000$0$0$NoLien
Reid DukeBears (Was)C231996-01-28No191 Lbs6 ft0NoNoNo3Avec RestrictionPro & Farm300,000$0$0$NoLien
Rich CluneBears (Was)LW321987-04-25No207 Lbs5 ft10NoNoNo3Sans RestrictionPro & Farm500,000$0$0$NoLien
Sami NikuBears (Was)D221996-10-10No176 Lbs6 ft1NoNoNo3Contrat d'EntréePro & Farm300,000$0$0$NoLien
Trevor MurphyBears (Was)D231995-07-17No180 Lbs5 ft10NoNoNo1Avec RestrictionPro & Farm300,000$0$0$NoLien
Vitek VanecekBears (Was)G231996-01-09No181 Lbs6 ft1NoNoNo2Avec RestrictionPro & Farm500,000$0$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1325.38198 Lbs6 ft12.23423,077$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Kyle CliffordJason Dickinson40122
2Brett SutterAnton Blidh30122
3Anton BlidhReid DukeKyle Clifford20122
4Jason Dickinson10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Sami Niku40122
2Trevor Murphy30122
3Michael Kapla20122
4Sami Niku10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Kyle CliffordJason Dickinson60122
2Brett SutterAnton Blidh40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Sami Niku60122
2Trevor Murphy40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Kyle Clifford60122
2Jason DickinsonAnton Blidh40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Sami Niku60122
2Trevor Murphy40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Kyle Clifford60122Sami Niku60122
240122Trevor Murphy40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Kyle Clifford60122
2Jason DickinsonAnton Blidh40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Sami Niku60122
2Trevor Murphy40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Kyle CliffordJason DickinsonSami Niku
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Kyle CliffordJason DickinsonSami Niku
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, Dennis Yan, , Dennis Yan
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, Michael Kapla, Trevor MurphyMichael Kapla, Trevor Murphy
Tirs de Pénalité
Kyle Clifford, , Jason Dickinson, Anton Blidh,
Gardien
#1 : Vitek Vanecek, #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans11000000202000000000001100000020221.00024601145902011077780271410144125.00%50100.00%014831147.59%13931144.69%6814447.22%2361692506911255
2Bruins1010000067-11010000067-10000000000000.00069150014590261107778029510197114.29%4250.00%014831147.59%13931144.69%6814447.22%2361692506911255
3Crunch211000006601010000024-21100000042220.5006101600145905011077780571628279222.22%11372.73%014831147.59%13931144.69%6814447.22%2361692506911255
4Gulls22000000918110000007161100000020241.0009162501145907911077780521820406233.33%90100.00%014831147.59%13931144.69%6814447.22%2361692506911255
5Penguins2110000047-3110000003031010000017-620.500481201145905111077780571523318211.11%110.00%014831147.59%13931144.69%6814447.22%2361692506911255
6Senators2020000017-61010000004-41010000013-200.0001230014590391107778049131823900.00%8187.50%014831147.59%13931144.69%6814447.22%2361692506911255
Total105500000282805230000018162532000001012-2100.500284977031459026511077780271818815653815.09%38781.58%014831147.59%13931144.69%6814447.22%2361692506911255
_Since Last GM Reset105500000282805230000018162532000001012-2100.500284977031459026511077780271818815653815.09%38781.58%014831147.59%13931144.69%6814447.22%2361692506911255
_Vs Conference945000002628-2523000001816242200000812-480.444264571021459024511077780244677814249714.29%33778.79%014831147.59%13931144.69%6814447.22%2361692506911255
_Vs Division2440000047-3122000003031220000017-682.000481201145905111077780571523318211.11%110.00%014831147.59%13931144.69%6814447.22%2361692506911255

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
1010L1284977265271818815603
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
105500002828
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
52300001816
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
53200001012
Derniers 10 Matchs
WLOTWOTL SOWSOL
550000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
53815.09%38781.58%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
1107778014590
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
14831147.59%13931144.69%6814447.22%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
2361692506911255


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2019-09-021Bears1Penguins7LSommaire du Match
3 - 2019-09-0420Penguins0Bears3WSommaire du Match
4 - 2019-09-0532Bears4Crunch2WSommaire du Match
7 - 2019-09-0853Gulls1Bears7WSommaire du Match
8 - 2019-09-0964Bears1Senators3LSommaire du Match
10 - 2019-09-1175Bears2Americans0WSommaire du Match
11 - 2019-09-1291Bruins7Bears6LSommaire du Match
14 - 2019-09-15113Senators4Bears0LSommaire du Match
15 - 2019-09-16119Bears2Gulls0WSommaire du Match
18 - 2019-09-19141Crunch4Bears2LSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
0$ 55,000$ 24,940$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 0$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 0$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT