Admirals

GP: 50 | W: 38 | L: 10 | OTL: 2 | P: 78
GF: 173 | GA: 88 | PP%: 24.90% | PK%: 86.01%
GM : Julien Lessard | Morale : 50 | Team Overall : 62
Next Games #865 vs Condors

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Wade Allison (R)X100.008036916881797767586669656467656950660
2Jordan SzwarzX100.007246796371727562706163636378705050630
3Austin PoganskiX100.006635956377808364576159626469655850630
4David GustafssonX100.005335916281787764766361656261636850620
5Sam AnasXX100.006135936461798463766561576275683650620
6Jansen HarkinsXX100.005535956574867264756561566367647050620
7Otto SomppiX100.006736806279788363776159566265634950610
8Samuel AsselinX100.005633815865717661745962666365675450600
9Joseph Gambardella (A)XX100.006138885970788359705960576075683650600
10Vincent DesharnaisX100.008677735695838857305851634569654750650
11Connor MackeyX100.006642856578777362306863615269654250640
12Ian Mitchell (R)X100.005739876973828966306763625463627050640
13Ben ThomasX100.005635956475807562306156635069655850630
14John GilmourX100.005635956072887062306057634975684150630
15Jacob MiddletonX100.007976826185697059306457605369654750630
16Dominik MasinX100.007463675983889356305752584569657350630
17Nick Seeler (A)X100.007539675981787758306457614975684850630
18Brandon HickeyX100.007143836281767259305356584569646650620
19Gustav OlofssonX100.005248796180727560306156604873706250610
20Oskari Laaksonen (R)X100.006335916072847958306754574863626450610
21Markus Phillips (R)X100.006642855675778255305754584763625850600
Scratches
1Albin Grewe (R)X100.007643835972707556535551625861666850580
2Brandon GignacXX100.005843825766787358655955565367646250580
3Tanner KaspickX100.006551765774778256615455535765635950580
4Zachary GallantX100.006956615678717654585552575463666450570
5Luke Stevens (R)X100.008239885091606550525050575067645750560
6Samuel KurkerX100.007235935381636752555451565273675850560
TEAM AVERAGE100.00664384607777776050605760556865575061
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jake Oettinger100.00799089947877797877797866708150770
2Jeremy Helvig100.00756866847473757473757467715550710
Scratches
1Daniil Tarasov (R)100.00727880827170727170727163677450700
2Ian Scott (R)100.00606563775958605958605963676150610
TEAM AVERAGE100.0072757584717072717072716569685070
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Pascal Vincent67686669767176CAN5021,500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1David GustafssonAdmirals (Nas)C501437513116033113123379111.38%786917.40313163215400021094062.96%99900001.1723000342
2Ian MitchellAdmirals (Nas)D501437511380764138439510.14%66121624.3281927911920112198410.00%000000.8401000221
3Austin PoganskiAdmirals (Nas)RW5025255096401201012276315011.01%18114222.851218307221101152064454.56%49300000.8813000626
4John GilmourAdmirals (Nas)D50153348242084790335316.67%53111722.3481725541780221201420.00%000000.8600000434
5Sam AnasAdmirals (Nas)C/RW50172542301404140132398412.88%475215.05591432154000021065.22%6900001.1202000144
6Joseph GambardellaAdmirals (Nas)C/LW5018234132240593189215120.22%276315.26761327154000032059.18%4900001.0701000323
7Vincent DesharnaisAdmirals (Nas)D501026369170202205375296413.33%59115223.0471219521880110138120.00%000000.6200112134
8Nick SeelerAdmirals (Nas)D5092534238751383784204710.71%50102420.506814611740112140300.00%000000.6600100042
9Otto SomppiAdmirals (Nas)C5016163221320414781255519.75%859111.82101112024985162.34%54700001.0801000233
10Connor MackeyAdmirals (Nas)D297172412140293251133513.73%1458120.04661237127000197110.00%000010.8300000032
11Ben ThomasAdmirals (Nas)D50913222360103834141726.47%3777815.57011180000108210.00%000000.5700000221
12Brandon GignacAdmirals (Nas)C/LW4651217186010143892713.16%04399.5600000000002063.64%2200000.7700000111
13Jacob MiddletonAdmirals (Nas)D5001717246915104312613150.00%1870214.05000313000130000.00%000000.4800111020
14Samuel AsselinAdmirals (Nas)C501061618160142777155812.99%34759.5100000000002161.11%1800000.6712000220
15Jansen HarkinsAdmirals (Nas)C/LW1027952056259238.00%219719.760333390001291060.00%1500000.9100000011
16Jordan SzwarzAdmirals (Nas)C1224651603524328246.25%426021.7121314500000540053.75%24000000.4600000010
17Albin GreweAdmirals (Nas)LW52022004253140.00%0306.1800000000001050.00%200001.2900000010
18Zachary GallantAdmirals (Nas)C5011220500020.00%1326.4800000000000050.00%200000.6200000000
19Tanner KaspickAdmirals (Nas)C5000220021130.00%0367.3000001000020051.28%3900000.0000000000
Team Total or Average71217532449930355040883709132839589513.18%3461216417.09651131784801652268191420371360.04%249500010.82413323274034
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jake OettingerAdmirals (Nas)5038920.9261.7329782108611640000.867155001223
2Jeremy HelvigAdmirals (Nas)20100.9171.5040001120000.0000050000
Team Total or Average52381020.9261.7330192108711760000.8671550501223


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Albin GreweLW202001-03-22Yes187 Lbs6 ft0NoNoNo4ELCPro & Farm500,000$0$0$No
Austin PoganskiRW251996-02-16No198 Lbs6 ft1NoNoNo2RFAPro & Farm500,000$0$0$NoLink / NHL Link
Ben ThomasD251996-05-28No187 Lbs6 ft1NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Brandon GignacC/LW231997-11-07No170 Lbs5 ft11NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Brandon HickeyD251996-04-13No201 Lbs6 ft2NoNoNo2RFAPro & Farm500,000$0$0$NoLink / NHL Link
Connor MackeyD251996-09-12No190 Lbs6 ft2NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Daniil TarasovG221999-05-27Yes180 Lbs6 ft4NoNoNo4ELCPro & Farm300,000$0$0$No
David GustafssonC212000-04-11No196 Lbs6 ft2NoNoNo3ELCPro & Farm500,000$0$0$NoLink / NHL Link
Dominik MasinD251996-02-01No198 Lbs6 ft3NoNoNo4RFAPro & Farm300,000$0$0$NoLink / NHL Link
Gustav OlofssonD261994-12-01No199 Lbs6 ft2NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Ian MitchellD221999-01-18Yes173 Lbs5 ft11NoNoNo4ELCPro & Farm500,000$0$0$No
Ian ScottG221999-01-11Yes170 Lbs6 ft3NoNoNo4ELCPro & Farm300,000$0$0$No
Jacob MiddletonD251996-01-02No210 Lbs6 ft3NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Jake OettingerG221998-12-18No225 Lbs6 ft5NoNoNo2ELCPro & Farm900,000$0$0$NoLink / NHL Link
Jansen HarkinsC/LW241997-05-23No182 Lbs6 ft1NoNoNo1RFAPro & Farm500,000$0$0$NoLink / NHL Link
Jeremy HelvigG241997-05-25No188 Lbs6 ft4NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
John GilmourD281993-05-17No188 Lbs6 ft0NoNoNo4UFAPro & Farm300,000$0$0$NoLink / NHL Link
Jordan SzwarzC301991-05-14No192 Lbs5 ft11NoNoNo4UFAPro & Farm300,000$0$0$NoLink / NHL Link
Joseph GambardellaC/LW271993-12-01No196 Lbs5 ft10NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Luke StevensLW241997-02-11Yes208 Lbs6 ft5NoNoNo4RFAPro & Farm300,000$0$0$No
Markus PhillipsD221999-03-21Yes202 Lbs6 ft0NoNoNo4ELCPro & Farm300,000$0$0$No
Nick SeelerD281993-06-03No201 Lbs6 ft2NoNoNo4UFAPro & Farm300,000$0$0$NoLink / NHL Link
Oskari LaaksonenD221999-07-02Yes172 Lbs6 ft1NoNoNo4ELCPro & Farm300,000$0$0$No
Otto SomppiC231998-01-12No192 Lbs6 ft2NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Sam AnasC/RW281993-06-01No163 Lbs5 ft8NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Samuel AsselinC231998-07-01No180 Lbs5 ft9NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Samuel KurkerRW271994-04-08No202 Lbs6 ft2NoNoNo1RFAPro & Farm500,000$0$0$NoLink / NHL Link
Tanner KaspickC231998-01-28No200 Lbs6 ft0NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Vincent DesharnaisD251996-05-29No215 Lbs6 ft6NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Wade AllisonRW231997-10-14Yes205 Lbs6 ft2NoNoNo4RFAPro & Farm500,000$0$0$No
Zachary GallantC221999-03-06No188 Lbs6 ft2NoNoNo2ELCPro & Farm300,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3124.23192 Lbs6 ft12.74377,419$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Austin Poganski40122
2Joseph GambardellaDavid GustafssonSam Anas30122
3Otto SomppiSamuel Asselin20122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Vincent DesharnaisIan Mitchell40122
2John GilmourNick Seeler30122
3Jacob MiddletonBen Thomas20122
4Vincent DesharnaisIan Mitchell10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Austin Poganski60122
2Joseph GambardellaDavid GustafssonSam Anas40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Vincent DesharnaisIan Mitchell60122
2John GilmourNick Seeler40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Austin Poganski60122
2David Gustafsson40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Vincent DesharnaisIan Mitchell60122
2John GilmourNick Seeler40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Austin Poganski60122Vincent DesharnaisIan Mitchell60122
240122John GilmourNick Seeler40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Austin Poganski60122
2David Gustafsson40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Vincent DesharnaisIan Mitchell60122
2John GilmourNick Seeler40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Austin PoganskiVincent DesharnaisIan Mitchell
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Austin PoganskiVincent DesharnaisIan Mitchell
Extra Forwards
Normal PowerPlayPenalty Kill
, , Otto Somppi, Otto Somppi
Extra Defensemen
Normal PowerPlayPenalty Kill
Jacob Middleton, Ben Thomas, John GilmourJacob MiddletonBen Thomas, John Gilmour
Penalty Shots
Austin Poganski, , David Gustafsson, , Sam Anas
Goalie
#1 : Jake Oettinger, #2 : Jeremy Helvig


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
5078L117331348613071176339560902010
All Games
GPWLOTWOTL SOWSOLGFGA
503310312117388
Home Games
GPWLOTWOTL SOWSOLGFGA
2716711119353
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2317320108035
Last 10 Games
WLOTWOTL SOWSOL
530020
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2416024.90%2433486.01%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
423404473235754577
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
764142653.58%728145749.97%33569548.20%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
13469861100326573298


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2021-10-0211Palm Springs3Admirals5WBoxScore
5 - 2021-10-0536Admirals3Gulls0WBoxScore
6 - 2021-10-0649Phantoms4Admirals3LXBoxScore
7 - 2021-10-0755Admirals2Wild0WBoxScore
9 - 2021-10-0979Palm Springs2Admirals4WBoxScore
12 - 2021-10-1299Checkers0Admirals2WBoxScore
16 - 2021-10-16129Crunch1Admirals2WBoxScore
18 - 2021-10-18150Admirals4Marlies0WBoxScore
19 - 2021-10-19161Admirals4Gulls1WBoxScore
20 - 2021-10-20166Bruins1Admirals2WBoxScore
24 - 2021-10-24193Barracuda4Admirals2LBoxScore
26 - 2021-10-26206Admirals2Wild1WXBoxScore
27 - 2021-10-27219Admirals6Palm Springs1WBoxScore
29 - 2021-10-29231Penguins4Admirals1LBoxScore
32 - 2021-11-01257Wolves3Admirals2LBoxScore
33 - 2021-11-02271Admirals4Roadrunners3WBoxScore
35 - 2021-11-04287Moose0Admirals6WBoxScore
37 - 2021-11-06297Admirals3Americans2WBoxScore
39 - 2021-11-08314Admirals6Comets3WBoxScore
41 - 2021-11-10326Devils5Admirals3LBoxScore
45 - 2021-11-14353Reign1Admirals6WBoxScore
47 - 2021-11-16372Admirals2Barracuda3LBoxScore
48 - 2021-11-17385Barracuda1Admirals4WBoxScore
52 - 2021-11-21417Wild1Admirals2WBoxScore
54 - 2021-11-23429Admirals1Gulls0WBoxScore
56 - 2021-11-25445Admirals4Palm Springs2WBoxScore
57 - 2021-11-26452Devils0Admirals1WBoxScore
59 - 2021-11-28480Heat2Admirals8WBoxScore
61 - 2021-11-30493Admirals5Crunch1WBoxScore
63 - 2021-12-02513Crunch2Admirals8WBoxScore
66 - 2021-12-05530Admirals4Griffins5LBoxScore
67 - 2021-12-06539Admirals5Condors2WBoxScore
68 - 2021-12-07549Roadrunners2Admirals8WBoxScore
70 - 2021-12-09573Admirals3Devils4LBoxScore
71 - 2021-12-10578Marlies2Admirals1LXXBoxScore
74 - 2021-12-13609Checkers1Admirals3WBoxScore
76 - 2021-12-15623Admirals4Moose2WBoxScore
78 - 2021-12-17641Wolves2Admirals3WXBoxScore
80 - 2021-12-19656Admirals3Heat2WBoxScore
81 - 2021-12-20667Admirals2Wolf Pack1WXBoxScore
83 - 2021-12-22677Thunderbirds3Admirals2LBoxScore
86 - 2021-12-25705Wolf Pack1Admirals2WXXBoxScore
88 - 2021-12-27723Admirals2Rocket1WBoxScore
90 - 2021-12-29736Americans2Admirals1LBoxScore
92 - 2021-12-31746Admirals2Checkers1WXXBoxScore
94 - 2022-01-02769Phantoms3Admirals6WBoxScore
97 - 2022-01-05796Admirals2Senators0WBoxScore
98 - 2022-01-06801Palm Springs0Admirals4WBoxScore
101 - 2022-01-09832Admirals7IceHogs0WBoxScore
102 - 2022-01-10835Rocket3Admirals2LBoxScore
106 - 2022-01-14865Condors-Admirals-
108 - 2022-01-16888Admirals-Marlies-
109 - 2022-01-17897Eagles-Admirals-
112 - 2022-01-20920Admirals-Senators-
113 - 2022-01-21929Stars-Admirals-
116 - 2022-01-24954Admirals-Sound Tigers-
117 - 2022-01-25961Moose-Admirals-
119 - 2022-01-27976Admirals-Bears-
120 - 2022-01-28991Admirals-Penguins-
121 - 2022-01-29996Monsters-Admirals-
123 - 2022-01-311020Admirals-Rampage-
124 - 2022-02-011028Monsters-Admirals-
127 - 2022-02-041054Admirals-Wild-
128 - 2022-02-051060Senators-Admirals-
132 - 2022-02-091090Bears-Admirals-
135 - 2022-02-121104Admirals-Thunderbirds-
137 - 2022-02-141122Sound Tigers-Admirals-
138 - 2022-02-151132Admirals-Monsters-
Trade Deadline --- Trades can’t be done after this day is simulated!
142 - 2022-02-191154Admirals-Eagles-
143 - 2022-02-201156Gulls-Admirals-
144 - 2022-02-211173Admirals-Phantoms-
146 - 2022-02-231187Penguins-Admirals-
148 - 2022-02-251205Admirals-Wolf Pack-
149 - 2022-02-261215Admirals-Reign-
150 - 2022-02-271220Bruins-Admirals-
153 - 2022-03-021241Admirals-Bears-
155 - 2022-03-041251Admirals-Reign-
156 - 2022-03-051260Sound Tigers-Admirals-
157 - 2022-03-061271Admirals-Roadrunners-
160 - 2022-03-091285Stars-Admirals-
161 - 2022-03-101292Admirals-Bruins-
162 - 2022-03-111294Admirals-Stars-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance51,19725,600
Attendance PCT94.81%94.81%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
14 2844 - 94.81% 70,918$1,914,787$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
994,792$ 117,000$ 0$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 67,510$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
992,853$ 63 9,800$ 617,400$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
12825914001442871311564131500131153609341289000131347163131287510797119010511167233207807927461650495121017125329618.05%4995489.18%31572264059.55%1248223955.74%705114861.41%232616931670555964519
137639210446224015783381814021211178235382170234112375481042404176570100847769194806126706431571504119915244097518.34%5206986.73%91352229258.99%1229222155.34%623106358.61%206514761645521906485
1476462002233259139120382213010021227151382470123113768691072594737320110100767822420699731792169646989813253545916.67%3563889.33%51418235560.21%1294220758.63%640111257.55%208415131611511902478
158248230522224614898412690221113374594122140301111374391142464516971120927770234407728287301809567102215414637816.85%4113791.00%51590262860.50%1365237657.45%629117353.62%221616031769563965507
165033100312117388852716701111935340231730201080354578173313486010575457713074234044732311763395609022416024.90%2433486.01%3764142653.58%728145749.97%33569548.20%13469861100326573298
Total Regular Season36622588014101712120566354218511348065766183402781811124008510658732326453412052164336926257435398291101734233267349429347902237448897004199936818.41%202923288.57%2566961134159.04%58641050055.85%2932519156.48%1003972727797247843102288
Playoff
121064000003818205320000020515532000001813512387010804016138254087857921056130191501020.00%57787.72%317327363.37%15230050.67%7814155.32%2491772357111758
1316106000004232108440000019154862000002317620427511701024883530123121893781112942891102018.18%1291389.92%226348654.12%27453251.50%12623653.39%40928040011919499
14624000001114-3321000005503030000069-3411213210043414404350451474011210628414.29%35294.29%08818447.83%10119452.06%459050.00%151103151457737
1512750000030273734000001620-454100000147714305282110129930601071009934091127217671420.90%52982.69%014335240.63%14941236.17%6316937.28%2781973068613969
Total Playoff442519000001219130231211000006045152113800000614615501212183392605633291057036035631210752986638032554818.82%2733188.64%5667129551.51%676143847.01%31263649.06%10887591093323529265