Comets

GP: 48 | W: 29 | L: 15 | OTL: 4 | P: 62
GF: 169 | GA: 127 | PP%: 15.81% | PK%: 83.11%
GM : Stéphane Lacasse | Morale : 50 | Team Overall : 63
Next Games #801 vs Crunch

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Alex Chiasson0X100.007540886388848264656268616678754550660
2Philip Tomasino0XXX99.006138927370868769717264596762648150660
3Luke Evangelista0X100.006036906971867368606966646762637450650
4Lukas Reichel0X99.005836957068858767706864626961638350650
5Marco Rossi0X99.005738757068888568756659606663648650640
6Will Cuylle0X100.007643726286857361625861606461636850620
7William Dufour0X100.007140776383787259636058626461634950620
8Jean-Luc Foudy0X100.005838826668808263726458606461636650620
9Tyler Benson0X100.006838816272767764636159606465677450620
10Jackson Cates0X100.006136955972778257735859615666684250610
11Jachym Kondelik0X100.008942835698716653615554625264665950600
12Isak Rosen0X100.006235946062837158636159546360628650590
13Marcus Bjork0X99.007740756589847466306761625266684250660
14Jacob Moverare0X100.007240876285828159306258674965675850660
15Brad Hunt0X100.005636916769818368307262595475772350650
16Brogan Rafferty0X100.006439826173758658306655594868703650630
17Roland McKeown0X100.006539755976808457306058624967696150630
18Jacob Bernard-Docker0X100.006339836372828362306058614963658050630
Scratches
1JJ Peterka0X87.825534897372838868586662566560627750640
2Alex Turcotte0X90.696038806469767262665859606562648850600
3Ryan Shea0X100.006439865873698557306154564766685650610
4Max Gildon0X100.007341755582707254305753564664666550600
5Ryan O'Rourke0X100.006137925370647252305450514561637550560
6Kim Nousiainen0X100.006336955463626753305552504563655950550
TEAM AVERAGE98.88653885637579796151625959576466645062
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Connor Ingram100.00798581807877797877797865756050760
2Remi Poirier100.00725960827170727170727162674950680
Scratches
1Beck Warm100.00605556705958605958605964714350600
TEAM AVERAGE100.0070666677696870696870696471515068
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Derek Lalonde75767972767174USA5141,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Lukas ReichelComets (New)LW422222441916056621875712711.76%985420.335813471980001323259.65%5700021.0300000633
2William DufourComets (New)RW481527421642106655135439811.11%882117.1141115381590001863055.97%13400001.0200002501
3Brogan RaffertyComets (New)D487293627460793749104314.29%4292019.174913301621012125200.00%000000.7800000215
4Cody GlassNew Jersey DevilsC21181230182204654100348118.00%949823.75426178600031044061.73%64800001.2000000343
5Will CuylleComets (New)LW48161329848109541108308814.81%459412.388412261120003262061.82%5500000.9800110034
6Marco RossiComets (New)C327212813240525263225011.11%658318.2415611970002142165.29%53300000.9600000200
7Jacob MoverareComets (New)D38522271641554446420507.81%3086522.78369451550002141000.00%000000.6200010113
8Jean-Luc FoudyComets (New)C331311241060185789244614.61%342112.77202411000041155.08%42300001.1400000330
9Marcus BjorkComets (New)D2812223242061244318342.33%2163522.7009931124000096000.00%000000.7200000020
10Roland McKeownComets (New)D48220221635552151881011.11%2656311.7502209000013010.00%000000.7800001102
11Jacob Bernard-DockerComets (New)D48319222620030264312296.98%1667314.041122081011168100.00%000000.6500000014
12Tyler BensonComets (New)LW488111913100283474225210.81%13978.2700014000022051.43%3500000.9600000002
13Philip TomasinoComets (New)C/LW/RW24810188160243174264110.81%543818.27325171190003300061.22%4900000.8200000120
14Luke EvangelistaComets (New)RW18512179401027649477.81%635719.8914513650110571038.36%7300000.9500000210
15Alex TurcotteComets (New)C437815580115364203810.94%74119.57011040000312054.48%43500000.7300000110
16JJ PeterkaComets (New)RW277815-1140142464154610.94%544516.5011215610000170054.29%3500000.6700000031
17Jachym KondelikComets (New)C4776139395512634112520.59%52966.3200000000001058.33%27600000.8800100020
18Jackson CatesComets (New)C4867131160104955134810.91%551010.630002660002691060.32%43100000.5100000001
19Alex ChiassonComets (New)RW19371060012163912267.69%227114.270110120113961047.62%2100000.7400000020
20Brad HuntComets (New)D17281044068215149.52%1032719.271011556000148100.00%000000.6100000010
21Isak RosenComets (New)LW483693604224212247.14%13898.1200000000001070.83%2400000.4600000000
22Klim KostinNew Jersey DevilsC/LW/RW10538421522222952017.24%319919.971236320000512062.69%6700000.8000001101
23Ryan SheaComets (New)D45077735518164580.00%103507.790000200002000.00%000000.4000001000
24Max GildonComets (New)D29033018024710130.00%81876.4500029000033000.00%000000.3200000000
25Ryan O'RourkeComets (New)D29000-140112000.00%3361.2600023000021000.00%000000.0000000000
Team Total or Average886170314484248527458448031475434104811.53%2451205213.603968107342163913424117830559.04%329600020.8000225283030
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Connor IngramComets (New)3726830.9042.00215845727520110.0000370311
2Remi PoirierComets (New)31000.8933.03119006560000.0000138000
Team Total or Average4027830.9032.06227745788080110.00003838311


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Alex ChiassonRW331990-10-01No208 Lbs6 ft4NoNoNo2UFAPro & Farm500,000$0$0$NoLink / NHL Link
Alex Turcotte (Out of Payroll)C222001-02-26No185 Lbs5 ft11NoNoNo2ELCPro & Farm900,000$0$0$YesLink / NHL Link
Beck WarmG241999-04-22No173 Lbs6 ft0NoNoNo1RFAPro & Farm300,000$0$0$NoLink
Brad HuntD351988-08-24No177 Lbs5 ft9NoNoNo2UFAPro & Farm1,000,000$0$0$NoLink / NHL Link
Brogan RaffertyD281995-05-28No195 Lbs6 ft0NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Connor IngramG261997-03-31No196 Lbs6 ft2NoNoNo1RFAPro & Farm750,000$0$0$NoLink / NHL Link
Isak RosenLW202003-03-15No156 Lbs5 ft10NoNoNo4ELCPro & Farm900,000$0$0$NoLink
JJ Peterka (Out of Payroll)RW222002-01-14No189 Lbs6 ft0NoNoNo4ELCPro & Farm900,000$0$0$YesLink / NHL Link
Jachym KondelikC241999-12-21No226 Lbs6 ft6NoNoNo4RFAPro & Farm500,000$0$0$NoLink
Jackson CatesC261997-09-26No190 Lbs6 ft0NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Jacob Bernard-DockerD232000-06-30No190 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Jacob MoverareD251998-08-31No210 Lbs6 ft3NoNoNo4RFAPro & Farm300,000$0$0$NoLink
Jean-Luc FoudyC212002-05-13No177 Lbs5 ft11NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Kim NousiainenD232000-11-14No170 Lbs5 ft9NoNoNo4RFAPro & Farm500,000$0$0$NoLink
Lukas ReichelLW212002-05-17No170 Lbs6 ft0NoNoNo3ELCPro & Farm900,000$0$0$NoLink
Luke EvangelistaRW222002-02-21No183 Lbs6 ft0NoNoNo4ELCPro & Farm500,000$0$0$NoLink / NHL Link
Marco RossiC222001-09-23No182 Lbs5 ft9NoNoNo3ELCPro & Farm900,000$0$0$NoLink
Marcus BjorkD261997-11-24No211 Lbs6 ft4NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Max GildonD241999-05-17No194 Lbs6 ft3NoNoNo1RFAPro & Farm300,000$0$0$NoLink
Philip TomasinoC/LW/RW222001-07-28No179 Lbs6 ft0NoNoNo3ELCPro & Farm900,000$0$0$NoLink / NHL Link
Remi PoirierG222001-10-06No210 Lbs6 ft2NoNoNo4ELCPro & Farm300,000$0$0$NoLink
Roland McKeownD281996-01-20No195 Lbs6 ft1NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Ryan O'RourkeD212002-05-16No178 Lbs6 ft0NoNoNo4ELCPro & Farm500,000$0$0$NoLink
Ryan SheaD271997-02-11No177 Lbs6 ft1NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Tyler BensonLW251998-03-15No190 Lbs6 ft0NoNoNo4RFAPro & Farm300,000$0$0$NoLink / NHL Link
Will CuylleLW222002-02-05No211 Lbs6 ft3NoNoNo4ELCPro & Farm500,000$0$0$NoLink
William DufourRW222002-01-28No215 Lbs6 ft2NoNoNo4ELCPro & Farm500,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2724.30190 Lbs6 ft12.81550,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Lukas ReichelMarco RossiPhilip Tomasino40122
2Luke EvangelistaJean-Luc FoudyAlex Chiasson30122
3Will CuylleJackson CatesWilliam Dufour20122
4Tyler BensonJachym KondelikIsak Rosen10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Marcus BjorkBrad Hunt41122
2Brogan RaffertyJacob Bernard-Docker34122
3Jacob MoverareRoland McKeown24122
4Jacob MoverareBrogan Rafferty1122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Lukas ReichelMarco RossiPhilip Tomasino60122
2Alex ChiassonJean-Luc FoudyLuke Evangelista40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Brogan RaffertyMarcus Bjork60122
2Brad HuntJacob Bernard-Docker40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Marco RossiAlex Chiasson60122
2Jean-Luc FoudyWilliam Dufour40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Marcus BjorkJacob Moverare60122
2Jacob Bernard-DockerBrogan Rafferty40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Marco Rossi60122Marcus BjorkJacob Moverare60122
2Jean-Luc Foudy40122Jacob Bernard-DockerBrogan Rafferty40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Jackson CatesLukas Reichel60122
2Philip TomasinoAlex Chiasson40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jacob MoverareMarcus Bjork60122
2Jacob Bernard-DockerBrogan Rafferty40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Lukas ReichelMarco RossiPhilip TomasinoBrogan RaffertyMarcus Bjork
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Lukas ReichelPhilip TomasinoAlex ChiassonMarcus BjorkJacob Moverare
Extra Forwards
Normal PowerPlayPenalty Kill
William Dufour, Will Cuylle, Tyler BensonWilliam Dufour, Will CuylleWilliam Dufour
Extra Defensemen
Normal PowerPlayPenalty Kill
Marcus Bjork, Jacob Moverare, Roland McKeownBrogan RaffertyJacob Bernard-Docker, Marcus Bjork
Penalty Shots
Philip Tomasino, Lukas Reichel, Alex Chiasson, Marco Rossi, Luke Evangelista
Goalie
#1 : Connor Ingram, #2 : Remi Poirier
Custom OT Lines Forwards
Philip Tomasino, Marco Rossi, Jean-Luc Foudy, Lukas Reichel, Will Cuylle, Alex Chiasson, Alex Chiasson, William Dufour, Luke Evangelista, Jackson Cates, Jachym Kondelik
Custom OT Lines Defensemen
Marcus Bjork, Brogan Rafferty, Jacob Bernard-Docker, Jacob Moverare, Roland McKeown


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4862OTW11693124811476109828753588715
All Games
GPWLOTWOTL SOWSOLGFGA
4826153400169127
Home Games
GPWLOTWOTL SOWSOLGFGA
2613832009570
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2213702007457
Last 10 Games
WLOTWOTL SOWSOL
801100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2534015.81%2193783.11%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
53648444888347363
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
858151956.48%712131154.31%41472756.95%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
13501007996303544291


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
4 - 2023-08-132Crunch0Comets9WBoxScore
6 - 2023-08-1528Comets5Marlies1WBoxScore
12 - 2023-08-2148Comets2Islanders0WBoxScore
18 - 2023-08-2777Comets4Crunch0WBoxScore
19 - 2023-08-2890Americans3Comets4WXBoxScore
23 - 2023-09-01108Comets2Rocket3LBoxScore
25 - 2023-09-03119Comets2Americans4LBoxScore
26 - 2023-09-04129Wolfpack1Comets3WBoxScore
32 - 2023-09-10156Comets1Americans3LBoxScore
33 - 2023-09-11165Americans1Comets2WBoxScore
39 - 2023-09-17197Comets3Thunderbirds2WBoxScore
40 - 2023-09-18210Rocket4Comets3LXBoxScore
44 - 2023-09-22232Crunch2Comets6WBoxScore
46 - 2023-09-24239Comets8Crunch1WBoxScore
47 - 2023-09-25259Comets2Thunderbirds0WBoxScore
51 - 2023-09-29270Senators3Comets4WXBoxScore
54 - 2023-10-02292Comets3Monsters4LXBoxScore
55 - 2023-10-03304Comets3Monsters4LBoxScore
60 - 2023-10-08316Islanders1Comets4WBoxScore
61 - 2023-10-09333Comets7Crunch4WBoxScore
62 - 2023-10-10344Crunch3Comets8WBoxScore
67 - 2023-10-15361Penguins3Comets2LBoxScore
68 - 2023-10-16369Crunch6Comets5LBoxScore
75 - 2023-10-23418Monsters5Comets2LBoxScore
79 - 2023-10-27429Comets3Phantoms6LBoxScore
81 - 2023-10-29440Bruins6Comets2LBoxScore
82 - 2023-10-30454Americans7Comets0LBoxScore
88 - 2023-11-05477Rocket6Comets0LBoxScore
90 - 2023-11-07504Rocket2Comets1LXBoxScore
93 - 2023-11-10513Comets3Rocket1WBoxScore
95 - 2023-11-12520Monsters2Comets5WBoxScore
96 - 2023-11-13532Thunderbirds1Comets0LBoxScore
98 - 2023-11-15548Comets4Crunch2WBoxScore
100 - 2023-11-17557Senators1Comets5WBoxScore
102 - 2023-11-19567Americans3Comets1LBoxScore
103 - 2023-11-20579Comets5Crunch1WBoxScore
107 - 2023-11-24600Comets2Rocket5LBoxScore
109 - 2023-11-26614Comets1Americans8LBoxScore
110 - 2023-11-27626Crunch1Comets6WBoxScore
114 - 2023-12-01646Comets2Rocket3LXBoxScore
116 - 2023-12-03657Marlies1Comets3WBoxScore
117 - 2023-12-04670Marlies2Comets7WBoxScore
123 - 2023-12-10687Comets4Senators3WBoxScore
124 - 2023-12-11701Comets4Senators1WBoxScore
128 - 2023-12-15719Americans0Comets3WBoxScore
131 - 2023-12-18738Senators3Comets6WBoxScore
132 - 2023-12-19749Comets4Americans1WBoxScore
137 - 2023-12-24771Crunch3Comets4WXBoxScore
139 - 2023-12-26801Comets-Crunch-
142 - 2023-12-29809Comets-Senators-
144 - 2023-12-31819Phantoms-Comets-
145 - 2024-01-01833Comets-Bears-
151 - 2024-01-07859Marlies-Comets-
152 - 2024-01-08875Senators-Comets-
153 - 2024-01-09888Comets-Americans-
Trade Deadline --- Trades can’t be done after this day is simulated!
156 - 2024-01-12898Comets-Senators-
158 - 2024-01-14906Bears-Comets-
159 - 2024-01-15917Comets-Wolfpack-
165 - 2024-01-21952Islanders-Comets-
166 - 2024-01-22963Comets-Penguins-
167 - 2024-01-23977Comets-Americans-
170 - 2024-01-26988Rocket-Comets-
172 - 2024-01-28999Bruins-Comets-
173 - 2024-01-291009Thunderbirds-Comets-
176 - 2024-02-011022Comets-Islanders-
180 - 2024-02-051047Comets-Marlies-
181 - 2024-02-061064Comets-Marlies-
186 - 2024-02-111080Comets-Bruins-
187 - 2024-02-121095Comets-Bruins-
193 - 2024-02-181120Crunch-Comets-
194 - 2024-02-191133Comets-Crunch-
195 - 2024-02-201145Americans-Comets-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance48,64324,495
Attendance PCT93.54%94.21%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
10 2813 - 93.77% 70,059$1,821,539$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
794,935$ 130,500$ 0$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 92,329$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
700,592$ 58 5,797$ 336,226$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
1282491605354298137161412580033214955944124805022149826712529853283001801158786233108197327641645469131818165006713.40%5806888.28%61588257461.69%1352231358.45%688115959.36%232116861684561974518
1282491605354298137161412580033214955944124805022149826712529853283001801158786233108197327641645469131818165006713.40%5806888.28%61588257461.69%1352231358.45%688115959.36%232116861684561974518
1376471604162249114135382110031211196158382660104113053771172494316800130996872202807016416661543431115314344457617.08%4735388.79%11478236262.57%1297211761.27%644101863.26%212915311573526907489
1376243904333204244-4038141602213102113-1138102302120102131-2968204348552040836450204906586766911913563105516444646313.58%4337881.99%51168238349.01%1069210150.88%563111350.58%187513211829548897444
1376471604162249114135382110031211196158382660104113053771172494316800130996872202807016416661543431115314344457617.08%4735388.79%11478236262.57%1297211761.27%644101863.26%212915311573526907489
1376243904333204244-4038141602213102113-1138102302120102131-2968204348552040836450204906586766911913563105516444646313.58%4337881.99%51168238349.01%1069210150.88%563111350.58%187513211829548897444
1476342301312319013258381811010621016437381612003618968211001903265160130695157188106096116231696507108713483565314.89%4124589.08%21380235758.55%1251219856.92%59199959.16%203514511686531923481
1476234502213186234-483815220000193111-18388230221293123-305718633952508068585719710586661703191853894613953415114.96%4017581.30%21255232254.05%1082214250.51%601111054.14%191313601761534915459
1476342301312319013258381811010621016437381612003618968211001903265160130695157188106096116231696507108713483565314.89%4124589.08%21380235758.55%1251219856.92%59199959.16%203514511686531923481
1476234502213186234-483815220000193111-18388230221293123-305718633952508068585719710586661703191853894613953415114.96%4017581.30%21255232254.05%1082214250.51%601111054.14%191313601761534915459
158248220135328015013041251101040135706541231100313145806511428049777711601078186253908448508251743501110614744446815.32%4555089.01%41692273961.77%1377237258.05%708113562.38%233517101678562957511
158245200245623118051412390132311590254122110113311690261142314226531150728270224407477187611930569100115294207317.38%4275786.65%21547256660.29%1334240155.56%673113459.35%219515671804571985519
158248220135328015013041251101040135706541231100313145806511428049777711601078186253908448508251743501110614744446815.32%4555089.01%41692273961.77%1377237258.05%708113562.38%233517101678562957511
158245200245623118051412390132311590254122110113311690261142314226531150728270224407477187611930569100115294207317.38%4275786.65%21547256660.29%1334240155.56%673113459.35%219515671804571985519
1682551802304302166136412780120315081694128100110115285671213025538550801041148224450736807884180551097215024619420.39%4125387.14%11477260456.72%1149234549.00%650118654.81%229617191733532918484
1682422802532275195804122160021013293394120120232214310241101275493768114097957824550818807811186350587714024807916.46%3765385.90%31616271959.43%1298216260.04%712121058.84%225916641749545946498
1682551802304302166136412780120315081694128100110115285671213025538550801041148224450736807884180551097215024619420.39%4125387.14%11477260456.72%1149234549.00%650118654.81%229617191733532918484
1682422802532275195804122160021013293394120120232214310241101275493768114097957824550818807811186350587714024807916.46%3765385.90%31616271959.43%1298216260.04%712121058.84%225916641749545946498
177239240115225114910236201201111125745136191200041126755193251451702010086847522670698750800163042479413083696216.80%3365483.93%31321222559.37%1063200053.15%566102055.49%205815371484454813438
17723424024622291626736151102341112803236191300121117823590229418647010086736219850654642667157447378012583607019.44%3384686.39%81383221462.47%1074182458.88%635103361.47%206115191451466853465
177239240115225114910236201201111125745136191200041126755193251451702010086847522670698750800163042479413083696216.80%3365483.93%31321222559.37%1063200053.15%566102055.49%205815371484454813438
17723424024622291626736151102341112803236191300121117823590229418647010086736219850654642667157447378012583607019.44%3384686.39%81383221462.47%1074182458.88%635103361.47%206115191451466853465
18482615034001691274226138032009570252213700200745717621693124811583473631476536484448810982875358872534015.81%2193783.11%1858151956.48%712131154.31%41472756.95%13501007996303544291
Total Regular Season1764906565055681026855593853170688446327602736483427611854907880443289028325434279819997992262555999321549172638320191750155349866536162241623816398396181126722713331079533155216.28%9505130186.31%75326685564958.70%274044926155.63%144762496157.99%483133514637871119752073310917
Playoff
1112750000033267743000001813553200000151321433619401013127283076909630868262278991515.15%971089.69%118539147.31%21341051.95%10018354.64%3022052999615175
1112750000033267743000001813553200000151321433619401013127283076909630868262278991515.15%971089.69%118539147.31%21341051.95%10018354.64%3022052999615175
12151050000034241086200000191277430000015123203463970301261236809411613327984281351121108.26%1221190.98%326854049.63%23148247.93%8320839.90%406276375128203101
12151050000034241086200000191277430000015123203463970301261236809411613327984281351121108.26%1221190.98%326854049.63%23148247.93%8320839.90%406276375128203101
131165000002526-1642000001613352300000913-41225426700010212254082788922358176230841011.90%771087.01%020936856.79%19133557.01%8416650.60%2821922558614069
131165000002526-1642000001613352300000913-41225426700010212254082788922358176230841011.90%771087.01%020936856.79%19133557.01%8416650.60%2821922558614069
142316700000513219117400000221931293000002913163251891400601515146980150176189622166380503147149.52%1691392.31%053097754.25%45489150.95%18636251.38%749524661210356183
142316700000513219117400000221931293000002913163251891400601515146980150176189622166380503147149.52%1691392.31%053097754.25%45489150.95%18636251.38%749524661210356183
151147000002231-9624000001118-7523000001113-282242640107103284080901032565915121751611.76%661084.85%021935362.04%21533065.15%9115558.71%2942082507913368
1523131000000504641055000002224-2138500000282262650941440202316851501781581565211433524511312216.79%1452384.14%236472550.21%35471749.37%18233454.49%572383559177297150
151147000002231-9624000001118-7523000001113-282242640107103284080901032565915121751611.76%661084.85%021935362.04%21533065.15%9115558.71%2942082507913368
1523131000000504641055000002224-2138500000282262650941440202316851501781581565211433524511312216.79%1452384.14%236472550.21%35471749.37%18233454.49%572383559177297150
Total Playoff1901127800000430370609656400000021619818945638000002141724222443078212120260160122112480401320141615324418115632044060126615412.16%135215488.61%123550670852.92%3316633052.39%1452281651.56%521535804806155725631297