Marlies

GP: 53 | W: 17 | L: 32 | OTL: 4 | P: 38
GF: 103 | GA: 174 | PP%: 16.81% | PK%: 79.37%
GM : Sebastien Cloutier | Morale : 50 | Team Overall : 62
Next Games #853 vs Roadrunners

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Mikkel BoedkerX100.005735957374798168586664627179735250660
2Andy MieleX100.006152726361889364776861566282732650640
3Stefan MatteauX100.008743836282787961676162646273676850640
4Michael McCarronXX100.007885576299828559665860645771667750630
5Tye McGinnX100.007837695987889358605661625979714650630
6Sean MaloneX100.005063566374867562736860576271664750620
7Joseph CramarossaX100.007964506172737260606159606077695450610
8Zach NastasiukX100.007235925681778254525355575471666950590
9Ryan BourqueX100.005736895666859054555256535778705250580
10Tyrell GoulbourneX100.006458665473758052555153565273675650570
11Cameron SchillingX100.007248795981828756306354585082762850640
12Ashton SautnerX100.005035956576747864306057635173673850630
13Seth HelgesonX100.007468565490798453305552614579774650630
14Keegan LoweX100.007053725479899452305353554575715450620
15Vincent LoVerdeX100.006443835673798457305553584680782750620
16Brett LernoutX100.008274725489687156305551594571666250610
17Keaton ThompsonX100.006252735471788354305653544671666050590
Scratches
1John McCarthyX100.006742855576606554555159565785752550570
2David PopeX100.006939875578606553575254565373675150560
3Michael PaliottaX100.007956705288606552305350574575685550590
TEAM AVERAGE100.00695175587977805749575658547670505061
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Troy Grosenick100.00728180747170727170727180864050710
2Joseph Woll100.00708785876968706968706965696750700
Scratches
1Scott Darling100.00627382956160626160626182872950670
2Emil Larmi100.00627880716160626160626169734250630
TEAM AVERAGE100.0067808282666567666567667479455068
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Dan Bylsma64616570757075USA512100,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Seth HelgesonMarlies (Tor)D53182240-2624725285121184711179.78%153120922.82146201352130000105300.00%000000.6611212355
2Ashton SautnerMarlies (Tor)D53111627-126220767749183222.45%7982215.52000000000119410.00%000000.6601040241
3Keegan LoweMarlies (Tor)D53131326-228915178681304510310.00%6299418.761081891142000097100.00%000000.5200111330
4Vincent LoVerdeMarlies (Tor)D5362026-23300627111746805.13%81101719.2041418841410000116010.00%000000.5101000213
5Sean MaloneMarlies (Tor)C5318523-73759773142409212.68%2357510.8600000000003059.90%19700020.8003100324
6Tyrell GoulbourneMarlies (Tor)LW53011000001110.00%1130.250000000000000.00%000001.5201000000
7Joseph CramarossaMarlies (Tor)LW53000-100004110.00%080.1600000000000040.00%500000.0003000000
8Ryan BourqueMarlies (Tor)LW53000-100000020.00%050.1000000000000050.00%200000.0013000000
Team Total or Average4246677143-924656569841062722242810.53%399464610.96282856310497000043811259.31%20400020.62213463131513
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Troy GrosenickMarlies (Tor)53173240.9073.1630006415817030610.93716530641
Team Total or Average53173240.9073.1630006415817030610.93716530641


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Andy MieleC331988-04-15No169 Lbs5 ft7NoNoNo3UFAPro & Farm500,000$0$0$NoLink / NHL Link
Ashton SautnerD271994-05-27No195 Lbs6 ft1NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Brett LernoutD261995-09-24No214 Lbs6 ft4NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Cameron SchillingD331988-10-07No190 Lbs6 ft3NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
David PopeLW271994-09-27No187 Lbs6 ft2NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Emil LarmiG251996-09-28No185 Lbs6 ft0NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
John McCarthyLW351986-08-09No195 Lbs6 ft1NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Joseph CramarossaLW281992-10-26No188 Lbs6 ft0NoNoNo2UFAPro & Farm300,000$0$0$NoLink / NHL Link
Joseph WollG231998-07-12No203 Lbs6 ft4NoNoNo3RFAPro & Farm500,000$0$0$NoLink / NHL Link
Keaton ThompsonD261995-09-14No182 Lbs6 ft0NoNoNo4RFAPro & Farm300,000$0$0$NoLink / NHL Link
Keegan LoweD281993-03-29No191 Lbs6 ft2NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Michael McCarronC/RW261995-03-07No232 Lbs6 ft6NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Michael PaliottaD281993-04-06No207 Lbs6 ft4NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Mikkel BoedkerLW311989-12-16No207 Lbs5 ft11NoNoNo3UFAPro & Farm656,134$0$0$NoLink / NHL Link
Ryan BourqueLW301991-01-03No185 Lbs5 ft9NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Scott DarlingG321988-12-22No226 Lbs6 ft5NoNoNo2UFAPro & Farm300,000$0$0$NoLink
Sean MaloneC261995-04-30No197 Lbs6 ft0NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Seth HelgesonD311990-10-08No219 Lbs6 ft4NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Stefan MatteauC271994-02-23No208 Lbs6 ft2NoNoNo1RFAPro & Farm500,000$0$0$NoLink / NHL Link
Troy GrosenickG321989-08-27No185 Lbs6 ft1NoNoNo2UFAPro & Farm1,000,000$0$0$NoLink / NHL Link
Tye McGinnLW311990-07-29No218 Lbs6 ft3NoNoNo4UFAPro & Farm500,000$0$0$NoLink / NHL Link
Tyrell GoulbourneLW271994-01-26No203 Lbs5 ft11NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Vincent LoVerdeD321989-04-14No205 Lbs5 ft11NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Zach NastasiukRW261995-03-30No202 Lbs6 ft2NoNoNo1RFAPro & Farm500,000$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2428.75200 Lbs6 ft11.88419,006$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
230122
3Sean Malone20122
4Sean Malone10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Seth Helgeson40122
2Keegan LoweVincent LoVerde30122
3Ashton Sautner20122
4Seth Helgeson10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Seth Helgeson60122
2Keegan LoweVincent LoVerde40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Seth Helgeson60122
2Keegan LoweVincent LoVerde40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Seth Helgeson60122
240122Keegan LoweVincent LoVerde40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Seth Helgeson60122
2Keegan LoweVincent LoVerde40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Seth Helgeson
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Seth Helgeson
Extra Forwards
Normal PowerPlayPenalty Kill
Joseph Cramarossa, Ryan Bourque, Tyrell GoulbourneJoseph Cramarossa, Ryan BourqueTyrell Goulbourne
Extra Defensemen
Normal PowerPlayPenalty Kill
, Ashton Sautner, Ashton Sautner,
Penalty Shots
, , , ,
Goalie
#1 : Troy Grosenick, #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
5338L310316626911781845531622103514
All Games
GPWLOTWOTL SOWSOLGFGA
5313322321103174
Home Games
GPWLOTWOTL SOWSOLGFGA
26101213006284
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2732010214190
Last 10 Games
WLOTWOTL SOWSOL
181000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2384016.81%2525279.37%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
380396390284134244
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
397132529.96%590196030.10%24473633.15%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
10417151578379585269


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2021-10-019Bears0Marlies2WBoxScore
3 - 2021-10-0321Marlies0Rampage5LBoxScore
5 - 2021-10-0537Crunch2Marlies7WBoxScore
8 - 2021-10-0866Marlies2Barracuda3LBoxScore
9 - 2021-10-0977Marlies3Senators2WXBoxScore
11 - 2021-10-1189Phantoms3Marlies2LXBoxScore
13 - 2021-10-13104Marlies1Penguins2LXXBoxScore
15 - 2021-10-15119Wolves3Marlies1LBoxScore
17 - 2021-10-17139Marlies0Sound Tigers6LBoxScore
18 - 2021-10-18150Admirals4Marlies0LBoxScore
21 - 2021-10-21172Roadrunners1Marlies6WBoxScore
22 - 2021-10-22184Marlies0Phantoms3LBoxScore
25 - 2021-10-25203Gulls2Marlies3WBoxScore
27 - 2021-10-27216Marlies6IceHogs5WBoxScore
29 - 2021-10-29235Comets2Marlies3WBoxScore
31 - 2021-10-31250Marlies2Rampage3LBoxScore
32 - 2021-11-01261Marlies5Reign4WBoxScore
35 - 2021-11-04281Griffins3Marlies2LBoxScore
37 - 2021-11-06299Sound Tigers6Marlies2LBoxScore
40 - 2021-11-09322Bears4Marlies3LXBoxScore
42 - 2021-11-11334Marlies1Americans2LBoxScore
45 - 2021-11-14359Wild7Marlies2LBoxScore
47 - 2021-11-16378Marlies5IceHogs2WBoxScore
49 - 2021-11-18392Crunch7Marlies1LBoxScore
50 - 2021-11-19400Marlies2Barracuda4LBoxScore
52 - 2021-11-21419Stars6Marlies1LBoxScore
54 - 2021-11-23433Marlies1Wolf Pack5LBoxScore
56 - 2021-11-25449Marlies3Wild4LBoxScore
58 - 2021-11-27463Senators1Marlies2WBoxScore
60 - 2021-11-29482Monsters2Marlies3WBoxScore
61 - 2021-11-30492Marlies0Gulls3LBoxScore
63 - 2021-12-02515Wolf Pack0Marlies1WBoxScore
65 - 2021-12-04529Marlies2Wolf Pack1WXXBoxScore
67 - 2021-12-06545Eagles5Marlies4LXBoxScore
69 - 2021-12-08559Marlies1Wolves3LBoxScore
71 - 2021-12-10578Marlies2Admirals1WXXBoxScore
72 - 2021-12-11589Condors4Marlies2LBoxScore
74 - 2021-12-13603Marlies2Condors5LBoxScore
76 - 2021-12-15621Penguins4Marlies0LBoxScore
78 - 2021-12-17638Marlies1Sound Tigers2LBoxScore
79 - 2021-12-18652Wolves0Marlies3WBoxScore
82 - 2021-12-21671Marlies0Comets3LBoxScore
83 - 2021-12-22684Checkers4Marlies1LBoxScore
85 - 2021-12-24700Marlies0Senators4LBoxScore
87 - 2021-12-26716Marlies0Checkers4LBoxScore
89 - 2021-12-28728Devils7Marlies3LBoxScore
92 - 2021-12-31750IceHogs0Marlies3WBoxScore
94 - 2022-01-02772Rampage4Marlies1LBoxScore
96 - 2022-01-04784Marlies1Rocket3LBoxScore
98 - 2022-01-06803Heat3Marlies4WXBoxScore
100 - 2022-01-08819Marlies0Thunderbirds2LBoxScore
101 - 2022-01-09831Marlies0Griffins3LBoxScore
102 - 2022-01-10843Marlies1Devils6LBoxScore
104 - 2022-01-12853Roadrunners-Marlies-
106 - 2022-01-14867Marlies-Reign-
107 - 2022-01-15882Marlies-Crunch-
108 - 2022-01-16888Admirals-Marlies-
111 - 2022-01-19913Bruins-Marlies-
114 - 2022-01-22936Marlies-Stars-
115 - 2022-01-23948Palm Springs-Marlies-
118 - 2022-01-26967Marlies-Monsters-
119 - 2022-01-27979Comets-Marlies-
121 - 2022-01-291004Phantoms-Marlies-
122 - 2022-01-301012Marlies-Bears-
124 - 2022-02-011032Marlies-Roadrunners-
125 - 2022-02-021039Marlies-Monsters-
127 - 2022-02-041049Gulls-Marlies-
129 - 2022-02-061073Sound Tigers-Marlies-
134 - 2022-02-111100Barracuda-Marlies-
136 - 2022-02-131112Marlies-Rampage-
138 - 2022-02-151129Moose-Marlies-
Trade Deadline --- Trades can’t be done after this day is simulated!
143 - 2022-02-201159Moose-Marlies-
145 - 2022-02-221180Marlies-Penguins-
147 - 2022-02-241193Crunch-Marlies-
149 - 2022-02-261213Marlies-Moose-
151 - 2022-02-281223Reign-Marlies-
152 - 2022-03-011230Marlies-Devils-
153 - 2022-03-021242Marlies-Bruins-
156 - 2022-03-051262Thunderbirds-Marlies-
157 - 2022-03-061269Marlies-Bruins-
160 - 2022-03-091288Thunderbirds-Marlies-
162 - 2022-03-111298Marlies-Phantoms-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance49,01124,131
Attendance PCT94.25%92.81%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 2813 - 93.77% 70,310$1,828,067$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
126,414$ 100,561$ 9,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 64,547$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
1,054,654$ 63 1,216$ 76,608$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
128296802201170454-284416320020191224-133413360200079230-15125170331501100665646205607066706653666101877514753924711.99%32110268.22%2686199834.33%901284931.63%399135529.45%12418242800620894352
137646801300118417-299381360010060210-150383320120058207-149131182303480004635361763058060157932578756461275323309.29%2617172.80%1527180329.23%702254627.57%326121126.92%10506852692580827303
147646900210123440-317382330021060216-156382360000063224-1611212323435700047413416430544519576364410207131260277248.66%3037475.58%4415171824.16%676273224.74%310120525.73%9916362786561791289
1582323106625200180204116140432211093174116170230390873912003445443100796152210206797046832258656118916183866216.06%4655787.74%21152244447.14%1147266243.09%553115148.05%200514162016580959478
1653133202321103174-71261012013006284-2227320010214190-4938103166269144134244117838039639028184553162210352384016.81%2525279.37%0397132529.96%590196030.10%24473633.15%10417151578379585269
Total Regular Season3696226801116577141665-95118435127051133383827-4441852714106524331838-5071797141305201951441272217172874238029052884253114670410039456663161620312.56%160235677.78%93177928834.21%40161274931.50%1832565832.38%6331427911873272240571694