Columbus Jackets

GP: 48 | W: 26 | L: 18 | OTL: 4 | P: 56
GF: 143 | GA: 132 | PP%: 15.38% | PK%: 85.39%
GM : Patrick Auger | Morale : 50 | Team Overall : 73
Next Games #786 vs Montreal Canadiens

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1David PastrnakX100.006243838573928188528390648669737850760
2Evander KaneXX100.008476657883888975687781768078777150750
3Phillip DanaultX100.008139867477879172897867866875746650740
4Ryan Nugent-Hopkins (A)XX100.005842847671899179828077768175787350740
5Blake ColemanXXX100.008943787274859068637075896778735250730
6Oskar LindblomXX100.007035957476818373626772747169665550700
7Frank VatranoXXX100.008039867274818573656974727673683750700
8Evgenii DadonovXX100.005835927669848677537176627981724550700
9Tyler BozakXX100.005835946677828568917268796885762350700
10Dylan StromeXXX100.005339877583867975827470637668708650690
11Brad RichardsonXXX100.007836906472788163806563866286782450690
12Jonathan DrouinXXX100.006939868073827479627766588071678550690
13Dougie HamiltonX100.007351797698908678308577816275727150770
14Oliver Ekman-Larsson (C)X100.008339787680908875307968735678867150740
15Cam FowlerX100.005739877279918873307769755278766850720
16Nate SchmidtX100.005835927473898871307668755678713550710
17Carl GunnarssonX100.006443816283847559306958835085752750700
18Dan Hamhuis (A)X100.007346816078817762306955775189793350690
Scratches
TEAM AVERAGE100.00694285737786847357747175687774565072
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Marcus Hogberg100.00788285947776787776787774785650780
Scratches
1Carter Hart96.00909487788988908988908966707250830
TEAM AVERAGE98.0084888686838284838284837074645081
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bob Boughner82838180757075CAN5121,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Dougie HamiltonColumbus JacketsD48930390435718287205710.34%78117724.544711491790223144000.00%000000.6600001231
2David PastrnakColumbus JacketsRW48161935-13601283177461519.04%490118.78471138177000002238.81%6700000.7834000212
3Evander KaneColumbus JacketsLW/RW481717344821014476138269212.32%584617.6406630167000014136.62%7100000.8034101422
4Phillip DanaultColumbus JacketsC467243111405313312132815.79%894720.602793015602271731050.86%128000000.6500000112
5Ryan Nugent-HopkinsColumbus JacketsC/LW48121729-1300610813542878.89%589918.7426832176000002050.04%120100000.6413000203
6Cam FowlerColumbus JacketsD48918276260835166184413.64%44105121.91437401611011144200.00%000100.5100000213
7Oliver Ekman-LarssonColumbus JacketsD4842226-2480122475918466.78%39103821.642683118200004110.00%000000.5000000012
8Nate SchmidtColumbus JacketsD48619256200654255254710.91%61105421.976511391610113145020.00%000000.4700000131
9Blake ColemanColumbus JacketsC/LW/RW48121224-454015887119309110.08%1597320.282351613411251663047.19%8900000.4900000131
10Frank VatranoColumbus JacketsC/LW/RW4810142420260414879235012.66%668014.17000000112762249.32%7300000.7100000300
11Jonathan DrouinColumbus JacketsC/LW/RW481112232200604689256412.36%267013.9624616111000002144.44%6300000.6902000041
12Evgenii DadonovColumbus JacketsLW/RW486814-410020458631656.98%269214.431231392000001128.89%4500000.4001000020
13Dylan StromeColumbus JacketsC/LW/RW48581342011626923507.25%659512.40000190000302052.20%65900000.4400000110
14Tyler BozakColumbus JacketsC/RW485813520125932102815.63%74128.59000001011981053.39%45700000.6300000011
15Carl GunnarssonColumbus JacketsD482101222404645244178.33%7279016.47000061013147000.00%000000.3000000000
16Oskar LindblomColumbus JacketsLW/RW487310280172544152215.91%53848.02000000002681031.71%4100000.5200000102
17Dan HamhuisColumbus JacketsD480990300732515370.00%3567614.0900003000044000.00%000000.2700000000
18Brad RichardsonColumbus JacketsC/LW/RW4627942034354213314.76%124189.110000011231520246.72%24400000.4300000101
19Casey MittelstadtMonsters (Clb)C/LW/RW41224-2801192712167.41%22586.30101313000000044.83%2900000.3100000010
20Ryan SuzukiMonsters (Clb)C2000-220000000.00%073.540000000000000.00%100000.0000000000
Team Total or Average903142259401264171510391108146441610469.70%4081447716.0330568633817345813301400241249.79%432000100.55714102212422
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Carter HartColumbus Jackets45241440.8972.6925402111411050000.57114453222
2Marcus HogbergColumbus Jackets82400.9022.6736000161640000.0000345001
Team Total or Average53261840.8982.6929012113012690000.571144848223


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Blake ColemanC/LW/RW291991-11-28No207 Lbs5 ft11NoNoNo3UFAPro & Farm2,500,000$2,500,000$1,008,523$NoLink / NHL Link
Brad RichardsonC/LW/RW361985-02-04No190 Lbs6 ft0NoNoNo2UFAPro & Farm1,000,000$1,000,000$403,409$NoLink / NHL Link
Cam FowlerD291991-12-05No207 Lbs6 ft1NoNoNo2UFAPro & Farm3,500,000$3,500,000$1,411,932$NoLink / NHL Link
Carl GunnarssonD341986-11-09No198 Lbs6 ft2NoNoNo1UFAPro & Farm1,000,000$1,000,000$403,409$NoLink / NHL Link
Carter HartG231998-08-13No181 Lbs6 ft2NoNoNo2RFAPro & Farm500,000$500,000$201,705$NoLink / NHL Link
Dan HamhuisD381982-12-13No204 Lbs6 ft1NoNoNo2UFAPro & Farm500,000$500,000$201,705$NoLink / NHL Link
David PastrnakRW251996-05-25No194 Lbs6 ft0NoNoNo4RFAPro & Farm5,000,000$5,000,000$2,017,045$NoLink / NHL Link
Dougie HamiltonD281993-06-17No229 Lbs6 ft6NoNoNo1UFAPro & Farm2,500,000$2,500,000$1,008,523$NoLink / NHL Link
Dylan StromeC/LW/RW241997-03-07No200 Lbs6 ft3NoNoNo1RFAPro & Farm900,000$900,000$363,068$NoLink / NHL Link
Evander KaneLW/RW301991-08-02No210 Lbs6 ft2NoNoNo1UFAPro & Farm5,000,000$5,000,000$2,017,045$NoLink / NHL Link
Evgenii DadonovLW/RW321989-03-12No185 Lbs5 ft11NoNoNo2UFAPro & Farm4,500,000$4,500,000$1,815,341$NoLink / NHL Link
Frank VatranoC/LW/RW271994-03-14No197 Lbs5 ft11NoNoNo1RFAPro & Farm1,000,000$1,000,000$403,409$NoLink / NHL Link
Jonathan DrouinC/LW/RW261995-03-28No201 Lbs5 ft11NoNoNo2RFAPro & Farm2,500,000$2,500,000$1,008,523$NoLink / NHL Link
Marcus HogbergG261994-11-25No222 Lbs6 ft5NoNoNo1RFAPro & Farm300,000$300,000$121,023$NoLink / NHL Link
Nate SchmidtD301991-07-16No194 Lbs6 ft0NoNoNo3UFAPro & Farm3,500,000$3,500,000$1,411,932$NoLink / NHL Link
Oliver Ekman-LarssonD301991-07-17No200 Lbs6 ft2NoNoNo1UFAPro & Farm3,500,000$3,500,000$1,411,932$NoLink / NHL Link
Oskar LindblomLW/RW251996-08-15No191 Lbs6 ft1NoNoNo1RFAPro & Farm500,000$500,000$201,705$NoLink / NHL Link
Phillip DanaultC281993-02-24No200 Lbs6 ft1NoNoNo1UFAPro & Farm2,500,000$2,500,000$1,008,523$NoLink / NHL Link
Ryan Nugent-HopkinsC/LW281993-04-12No184 Lbs6 ft0NoNoNo3UFAPro & Farm4,900,000$4,900,000$1,976,705$NoLink / NHL Link
Tyler BozakC/RW351986-03-19No199 Lbs6 ft1NoNoNo1UFAPro & Farm2,500,000$2,500,000$1,008,523$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2029.15200 Lbs6 ft11.752,405,000$

Sum Year 1 Salary Sum Year 2 Salary Sum Year 3 Salary Sum Year 4 Salary Sum Year 5 Salary
48,100,000$28,400,000$15,900,000$5,000,000$0$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Blake ColemanRyan Nugent-HopkinsDavid Pastrnak34113
2Evgenii DadonovPhillip DanaultEvander Kane30113
3Jonathan DrouinDylan StromeFrank Vatrano21122
4Oskar LindblomTyler BozakBrad Richardson15122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Dougie HamiltonOliver Ekman-Larsson32122
2Cam FowlerNate Schmidt32122
3Carl GunnarssonDan Hamhuis26131
4Dougie HamiltonOliver Ekman-Larsson10023
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Evander KaneRyan Nugent-HopkinsDavid Pastrnak50005
2Evgenii DadonovPhillip DanaultJonathan Drouin50014
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Dougie HamiltonOliver Ekman-Larsson60113
2Cam FowlerNate Schmidt40113
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Phillip DanaultBlake Coleman60131
2Tyler BozakBrad Richardson40140
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Dougie HamiltonCarl Gunnarsson60140
2Cam FowlerNate Schmidt40140
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Tyler Bozak60140Dougie HamiltonCarl Gunnarsson60140
2Blake Coleman40140Cam FowlerDan Hamhuis40140
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Ryan Nugent-HopkinsDavid Pastrnak60122
2Phillip DanaultEvander Kane40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Dougie HamiltonOliver Ekman-Larsson60122
2Cam FowlerNate Schmidt40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Evander KaneRyan Nugent-HopkinsDavid PastrnakDougie HamiltonOliver Ekman-Larsson
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Blake ColemanPhillip DanaultTyler BozakDougie HamiltonCarl Gunnarsson
Extra Forwards
Normal PowerPlayPenalty Kill
Evgenii Dadonov, Jonathan Drouin, Oskar LindblomBlake Coleman, David PastrnakFrank Vatrano
Extra Defensemen
Normal PowerPlayPenalty Kill
Cam Fowler, Oliver Ekman-Larsson, Nate SchmidtNate SchmidtDan Hamhuis, Nate Schmidt
Penalty Shots
David Pastrnak, Evander Kane, Ryan Nugent-Hopkins, Jonathan Drouin, Evgenii Dadonov
Goalie
#1 : , #2 : Marcus Hogberg


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4856L214325439714301269399419101901
All Games
GPWLOTWOTL SOWSOLGFGA
4820184222143132
Home Games
GPWLOTWOTL SOWSOLGFGA
2491120116970
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2411722117462
Last 10 Games
WLOTWOTL SOWSOL
520201
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1953015.38%1782685.39%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
4874694612745514111
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
859173049.65%787157749.90%39273753.19%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
11527961150357605302


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2021-10-0313Phoenix Coyotes4Columbus Jackets3LBoxScore
5 - 2021-10-0528Seattle Kraken1Columbus Jackets3WBoxScore
8 - 2021-10-0845Columbus Jackets5Detroit Red Wings2WBoxScore
10 - 2021-10-1056New York Islanders2Columbus Jackets6WBoxScore
12 - 2021-10-1274Carolina Hurricanes7Columbus Jackets0LBoxScore
14 - 2021-10-1488Dallas Stars3Columbus Jackets1LBoxScore
18 - 2021-10-18112Columbus Jackets1New York Rangers5LBoxScore
20 - 2021-10-20130Columbus Jackets5New Jersey Devils1WBoxScore
23 - 2021-10-23146Columbus Jackets5Colorado Avalanche6LR3BoxScore
26 - 2021-10-26169Colorado Avalanche4Columbus Jackets3LBoxScore
32 - 2021-11-01209Washington Capitals3Columbus Jackets2LBoxScore
33 - 2021-11-02217New York Rangers1Columbus Jackets2WBoxScore
35 - 2021-11-04231Detroit Red Wings1Columbus Jackets4WBoxScore
38 - 2021-11-07256Columbus Jackets3Phoenix Coyotes2WBoxScore
40 - 2021-11-09272Columbus Jackets4Vegas Knights3WXBoxScore
42 - 2021-11-11281Columbus Jackets2Buffalo Sabres3LXXBoxScore
44 - 2021-11-13295Winnipeg Jets0Columbus Jackets2WBoxScore
45 - 2021-11-14313Vancouver Canucks3Columbus Jackets4WXXBoxScore
46 - 2021-11-15322Columbus Jackets2St-Louis Blues3LBoxScore
49 - 2021-11-18342Columbus Jackets4Nashville Predators2WBoxScore
51 - 2021-11-20360Columbus Jackets3Dallas Stars2WBoxScore
53 - 2021-11-22371Columbus Jackets5Washington Capitals4WXBoxScore
54 - 2021-11-23378San Jose Sharks5Columbus Jackets4LBoxScore
56 - 2021-11-25388Columbus Jackets4Toronto Leafs6LBoxScore
58 - 2021-11-27404Anaheim Ducks4Columbus Jackets3LBoxScore
60 - 2021-11-29428Columbus Jackets4Seattle Kraken2WBoxScore
63 - 2021-12-02449Columbus Jackets1Vancouver Canucks2LBoxScore
65 - 2021-12-04463Columbus Jackets3Edmonton Oilers1WBoxScore
67 - 2021-12-06479Columbus Jackets3Calgary Flames2WXXBoxScore
69 - 2021-12-08489Columbus Jackets3Buffalo Sabres1WBoxScore
72 - 2021-12-11514Buffalo Sabres3Columbus Jackets4WXBoxScore
73 - 2021-12-12528Toronto Leafs2Columbus Jackets3WXBoxScore
74 - 2021-12-13538Columbus Jackets0Chicago Blackhawks1LBoxScore
76 - 2021-12-15554Nashville Predators2Columbus Jackets3WBoxScore
78 - 2021-12-17568Carolina Hurricanes4Columbus Jackets3LBoxScore
81 - 2021-12-20589Tampa Lightning2Columbus Jackets4WBoxScore
83 - 2021-12-22603Columbus Jackets2New Jersey Devils3LBoxScore
85 - 2021-12-24619New Jersey Devils3Columbus Jackets2LBoxScore
87 - 2021-12-26630Columbus Jackets3Montreal Canadiens1WBoxScore
88 - 2021-12-27640Chicago Blackhawks3Columbus Jackets4WBoxScore
90 - 2021-12-29652Columbus Jackets3Carolina Hurricanes4LXBoxScore
92 - 2021-12-31669Columbus Jackets4Florida Panthers1WBoxScore
95 - 2022-01-03693Columbus Jackets3New York Islanders2WBoxScore
97 - 2022-01-05706Columbus Jackets2Philadelphia Flyers3LXBoxScore
98 - 2022-01-06714Pittsburgh Penguins2Columbus Jackets4WBoxScore
100 - 2022-01-08733Ottawa Senators3Columbus Jackets2LXXBoxScore
103 - 2022-01-11754Calgary Flames3Columbus Jackets2LBoxScore
104 - 2022-01-12763New York Rangers5Columbus Jackets1LBoxScore
107 - 2022-01-15786Columbus Jackets-Montreal Canadiens-
108 - 2022-01-16792Florida Panthers-Columbus Jackets-
112 - 2022-01-20816Columbus Jackets-Florida Panthers-
113 - 2022-01-21823Columbus Jackets-Carolina Hurricanes-
115 - 2022-01-23843Pittsburgh Penguins-Columbus Jackets-
117 - 2022-01-25853New Jersey Devils-Columbus Jackets-
120 - 2022-01-28877Los Angeles Kings-Columbus Jackets-
121 - 2022-01-29886Boston Bruins-Columbus Jackets-
123 - 2022-01-31901Toronto Leafs-Columbus Jackets-
127 - 2022-02-04929Minnesota Wild-Columbus Jackets-
129 - 2022-02-06944Vegas Knights-Columbus Jackets-
132 - 2022-02-09964Columbus Jackets-Ottawa Senators-
133 - 2022-02-10971Washington Capitals-Columbus Jackets-
135 - 2022-02-12987St-Louis Blues-Columbus Jackets-
138 - 2022-02-151005Columbus Jackets-Pittsburgh Penguins-
Trade Deadline --- Trades can’t be done after this day is simulated!
141 - 2022-02-181030Columbus Jackets-Winnipeg Jets-
142 - 2022-02-191042Columbus Jackets-Minnesota Wild-
145 - 2022-02-221063New York Islanders-Columbus Jackets-
147 - 2022-02-241077Columbus Jackets-New York Islanders-
149 - 2022-02-261092Columbus Jackets-Boston Bruins-
151 - 2022-02-281109Boston Bruins-Columbus Jackets-
152 - 2022-03-011117Columbus Jackets-Philadelphia Flyers-
154 - 2022-03-031130Philadelphia Flyers-Columbus Jackets-
156 - 2022-03-051146Columbus Jackets-Detroit Red Wings-
159 - 2022-03-081168Columbus Jackets-Pittsburgh Penguins-
160 - 2022-03-091178Montreal Canadiens-Columbus Jackets-
163 - 2022-03-121209Columbus Jackets-Los Angeles Kings-
164 - 2022-03-131215Columbus Jackets-Anaheim Ducks-
166 - 2022-03-151227Columbus Jackets-San Jose Sharks-
169 - 2022-03-181244Ottawa Senators-Columbus Jackets-
171 - 2022-03-201263Edmonton Oilers-Columbus Jackets-
173 - 2022-03-221275Columbus Jackets-Tampa Lightning-
175 - 2022-03-241293Columbus Jackets-Washington Capitals-
176 - 2022-03-251305Tampa Lightning-Columbus Jackets-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2Level 3Level 4Luxury
Arena Capacity60005000200040001000
Ticket Price100603520200
Attendance136,106112,96646,50891,28423,108
Attendance PCT94.52%94.14%96.89%95.09%96.28%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
17 17082 - 94.90% 604,852$14,516,444$18000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches SalariesSpecial Salary Cap Value
29,188,399$ 48,100,000$ 2,500,000$ 0$ 0$
Salary Cap Per DaysSalary Cap To DateLuxury Taxe TotalPlayers In Salary CapPlayers Out of Salary Cap
48,100,000$ 28,566,222$ 0$ 20 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
10,282,481$ 71 278,977$ 19,807,367$

Team Total Estimate
Estimated Season ExpensesEstimated Season Salary CapCurrent Bank AccountProjected Bank Account
21,660,827$ 48,100,000$ 109,638,283$ 99,240,146$



Depth Chart

Left WingCenterRight Wing
Evander KaneAGE:30PO:71OV:75
Ryan Nugent-HopkinsAGE:28PO:73OV:74
Blake ColemanAGE:29PO:52OV:73
Oskar LindblomAGE:25PO:55OV:70
Evgenii DadonovAGE:32PO:45OV:70
Frank VatranoAGE:27PO:37OV:70
Dylan StromeAGE:24PO:86OV:69
Jonathan DrouinAGE:26PO:85OV:69
Brad RichardsonAGE:36PO:24OV:69
Casey MittelstadtAGE:22PO:86OV:66
Eric RobinsonAGE:26PO:42OV:66
Brendan LeipsicAGE:27PO:53OV:64
Brayden BurkeAGE:24PO:52OV:63
Jonah GadjovichAGE:23PO:70OV:61
David KaseAGE:24PO:56OV:61
Ryan Nugent-HopkinsAGE:28PO:73OV:74
Phillip DanaultAGE:28PO:66OV:74
Blake ColemanAGE:29PO:52OV:73
Frank VatranoAGE:27PO:37OV:70
Tyler BozakAGE:35PO:23OV:70
Dylan StromeAGE:24PO:86OV:69
Jonathan DrouinAGE:26PO:85OV:69
Brad RichardsonAGE:36PO:24OV:69
Casey MittelstadtAGE:22PO:86OV:66
Brendan LeipsicAGE:27PO:53OV:64
Brayden BurkeAGE:24PO:52OV:63
Daniel AudetteAGE:25PO:54OV:61
*Ryan SuzukiAGE:20PO:82OV:60
*Carson FochtAGE:21PO:56OV:59
Ryan HaggertyAGE:28PO:36OV:59
Jake LeschyshynAGE:22PO:68OV:58
David PastrnakAGE:25PO:78OV:76
Evander KaneAGE:30PO:71OV:75
Blake ColemanAGE:29PO:52OV:73
Oskar LindblomAGE:25PO:55OV:70
Evgenii DadonovAGE:32PO:45OV:70
Frank VatranoAGE:27PO:37OV:70
Tyler BozakAGE:35PO:23OV:70
Dylan StromeAGE:24PO:86OV:69
Jonathan DrouinAGE:26PO:85OV:69
Brad RichardsonAGE:36PO:24OV:69
Casey MittelstadtAGE:22PO:86OV:66
Eric RobinsonAGE:26PO:42OV:66
Brayden BurkeAGE:24PO:52OV:63
David KaseAGE:24PO:56OV:61
Max VeronneauAGE:25PO:42OV:61
Ryan HaggertyAGE:28PO:36OV:59

Defense #1Defense #2Goalie
Dougie HamiltonAGE:28PO:71OV:77
Oliver Ekman-LarssonAGE:30PO:71OV:74
Cam FowlerAGE:29PO:68OV:72
Nate SchmidtAGE:30PO:35OV:71
Carl GunnarssonAGE:34PO:27OV:70
Dan HamhuisAGE:38PO:33OV:69
*Ty SmithAGE:21PO:84OV:66
Will ButcherAGE:26PO:56OV:66
Oliwer KaskiAGE:26PO:42OV:65
Logan DayAGE:27PO:37OV:63
Brennan MenellAGE:24PO:53OV:62
Kyle BurroughsAGE:26PO:47OV:62
Leon GawankeAGE:22PO:57OV:61
Josiah DidierAGE:28PO:52OV:61
*Cole HultsAGE:23PO:56OV:58
Jeremy RoyAGE:24PO:76OV:57
Carter HartAGE:23PO:72OV:83
Marcus HogbergAGE:26PO:56OV:78
Filip GustavssonAGE:23PO:71OV:72

Prospects

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Prospect Team NameDraft Year Overall Pick Information Lien
Alex VlasicColumbus Jackets1550
Alexander NikishinColumbus Jackets16119
Alexei LipanovColumbus Jackets1380
Bulat ShafigullinColumbus Jackets14105
Filip WesterlundColumbus Jackets13109
Jan BednarColumbus Jackets16169
Jonny TychonickColumbus Jackets1474
Kasper BjorkqvistColumbus Jackets12121
Luke ReidColumbus Jackets16183
Thomas BordeleauColumbus Jackets1623

Draft Picks

Year R1R2R3R4R5R6
17Clb Ott
18Clb Clb Clb Clb
19Clb Clb Clb Clb
20Clb Clb Clb Clb Clb Clb
21Clb Clb Clb Clb Clb Clb



[2022-01-13 08:40:18] - TRADE : From Pittsburgh Penguins to Columbus Jackets : Brad Richardson (69).
[2022-01-13 08:40:18] - TRADE : From Columbus Jackets to Pittsburgh Penguins : Y:17-RND:4-Clb, Y:17-RND:6-Clb.
[2021-10-12 07:51:15] - TRADE : From Columbus Jackets to St-Louis Blues : Frans Nielsen (68).
[2021-10-12 07:51:15] - TRADE : From St-Louis Blues to Columbus Jackets : Tyler Bozak (70).
[2021-10-12 07:50:49] - TRADE : From Columbus Jackets to Boston Bruins : Christopher Tanev (72), Justin Richards (65), Y:17-RND:3-Clb, Y:19-RND:3-Clb.
[2021-10-12 07:50:49] - TRADE : From Boston Bruins to Columbus Jackets : Cam Fowler (72).
[2021-09-09 08:02:25] - Oliwer Kaski was added to Columbus Jackets.
[2021-08-31 18:54:36] - Justin Richards was added to Columbus Jackets.
[2021-08-23 22:34:54] - Columbus Jackets drafts Luke Reid as the #183 overall pick in the Entry Draft of year 16.
[2021-08-22 08:34:37] - Columbus Jackets drafts Jan Bednar as the #169 overall pick in the Entry Draft of year 16.



OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
638161300234133122112076002237167418970001162557341332093421103348491305040844644513084184697571202016.67%1172975.21%746594749.10%49097750.15%33564851.70%78344829601260676331
6823831013452812503141161501333135130541221600012146120268128144172224069109982850088610089452683910107717222514517.93%2526175.79%111008205049.17%956196648.63%715139451.29%1707976391716601451713
882145202446184306-12241102201224102138-36414300122282168-865018432250621068674321620710734696274277095019632774716.97%3428375.73%31118259843.03%1310299643.72%540127342.42%1790121421616211032490
982213903298200253-5341111901073112122-104110200222588131-437620034454423059616820150663659659245667183018872885418.75%2955282.37%41055251541.95%1173282341.55%485120840.15%1828122821296321063510
10822146011310183248-6541141901124101110-9417270001682138-566118332851114058744720360646707657242970263717022553614.12%2765978.62%11078255242.24%1178278142.36%536124243.16%1911131320346101041511
128231330844225224484116150422212111384115180422013113109225244769927081847526290854889851248071366916653106821.94%2745081.75%21454302048.15%1460283651.48%626125050.08%2010139719215991040525
1382353402254250255-541142101212119136-1741211301042131119129025044669615098757024500793828804249971076616633205918.44%2885381.60%11395288248.40%1353287747.03%627131747.61%1979138019595981040519
14823928036332392053441201601301120972341191202332119108119923943567417085846424140766820801228463276718373376318.69%3225383.54%51483286451.78%1427278151.31%609119451.01%1992138019466051026513
15824425016332552104541201201422119100194124130021113611026105255458713270101599124130809769815231765373018893165918.67%3195184.01%21494283852.64%1448286050.63%628123950.69%1954135019856081026510
16482018042221431321124911020116970-12411702211746212561432543970145514111143048746946127126939941910191953015.38%1782685.39%4859173049.65%787157749.90%39273753.19%11527961150357605302
Total Regular Season74227931902532404721202225-10537213715601319222510691083-1437014216301213182210511142-9174421203684580414404570370261621704487700473216700224676578731416104266948118.02%266351780.59%40114092399647.55%115822447447.32%54931150247.76%1710911485221647556100044928
Playoff
1273400000181803120000078-1422000001110161835530005491840575565246676215924520.83%24579.17%010423045.22%13128446.13%4010637.74%158106180549345
141046000002426-2532000001284514000001218-68244468020610828009510476276869322547817.02%39684.62%016234846.55%17634850.57%7014747.62%2441692387712864
159540000026224532000001410442200000121201026487401087924806574902548910420844511.36%42685.71%017032652.15%17733852.37%5913643.38%2231512417511757
Total Playoff2612140000068662137600000332671358000003540-5246812719503019212671202172332317762422595921151815.65%1051783.81%043690448.23%48497049.90%16938943.44%625427660207339167