Wolves

GP: 6 | W: 3 | L: 3 | OTL: 0 | P: 6
GF: 13 | GA: 10 | PP%: 6.90% | PK%: 88.57%
GM : Sebastien Chando | Morale : 50 | Team Overall : 64
Next Games #130 vs IceHogs

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Nils Hoglander0XX100.007133837466808972516670637166697250670
2Frank Nazar0X100.006236877368877569766867667262658550660
3Zemgus Girgensons0XXX100.007954856682798763786061746280736550660
4Alex Belzile0X100.006544636674948465716761636474762350650
5Sammy Blais0XX100.007351776782817964696661636569713850650
6Brad Lambert0X99.006337846772878564696658636562647850640
7Valtteri Puustinen0X100.006235956665828667636561626866674850640
8Akil Thomas0X100.006539846673847764626063616567686950630
9Amadeus Lombardi0X100.006336936563788164716362616563646050630
10Lukas Rousek0X100.005837866672748664706556615967684750630
11Colin White0X100.006739865976797857605859565770697150600
12Jack Johnson0X100.006837906385848361307155734891783750690
13Philippe Myers0X100.008354746793847965306260665168703650680
14Kale Clague0X100.006238766572798163306655584967696150630
15Lucas Johansen0X100.006739826076667259306153584768706650610
16David Spacek0X100.006038885969708558306053544662644950590
17Ethan Prow0X100.006037945969687457305853544673752650590
Scratches
1Cody Glass0XX99.706837896984838065806862676467698450660
2Gerry Mayhew0X100.006137826365848362686160626373752650630
3Madison Bowey0X100.007243685581647054305653574670725650600
4Ty Gallagher0X100.006338896272716157306154564762644950590
TEAM AVERAGE99.90664084657479806354635962586970555063
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Collin Delia100.00728277827170727170727171853450720
2Dylan Wells100.00697672786867696867696868775050690
Scratches
1Jack LaFontaine100.00707167816968706968706967775650690
TEAM AVERAGE100.0070767280696870696870696980475070
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Aaron Schneekloth69737166716680CAN4671,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Akil ThomasWolves (Car)C614522071015386.67%17712.9800010000000054.17%7200001.2800000101
2Valtteri PuustinenWolves (Car)RW614512035172155.88%07712.8500000000000020.00%500001.3000000020
3Sammy BlaisWolves (Car)LW/RW62240100106123716.67%09716.29000040002100038.46%1300000.8200000100
4Amadeus LombardiWolves (Car)C62133004851440.00%05910.0000000000001052.54%5900001.0000000010
5Lukas RousekWolves (Car)RW6033320347140.00%0599.99000000000000100.00%300001.0000000000
6Alex BelzileWolves (Car)RW611214077102710.00%07312.29101524000001050.00%200000.5400000000
7Brad LambertWolves (Car)C611212036132127.69%011819.70011521000000055.42%8300000.3400000000
8Jack JohnsonWolves (Car)D6022100366140.00%514824.80000424000032000.00%000000.2700000000
9David SpacekWolves (Car)D62022607130166.67%29515.8810112000012000.00%000000.4200000000
10Nils HoglanderWolves (Car)LW/RW6112-12013111071210.00%012520.860113250000330016.67%1200000.3200000100
11Philippe MyersWolves (Car)D602211201468340.00%614223.83011424000025000.00%000000.2800000000
12Zemgus GirgensonsWolves (Car)C/LW/RW6022120977240.00%09115.330110240000180050.00%800000.4300000000
13Lucas JohansenWolves (Car)D62022407391122.22%612821.44000423000124100.00%000000.3100000000
14Frank NazarWolves (Car)C6011-12049142170.00%310317.320002250000140057.01%10700000.1900000000
15Ethan ProwWolves (Car)D6011360203110.00%28213.800000000003000.00%000000.2400000000
16Cody GlassWolves (Car)C/RW1000020022000.00%01616.0200003000040055.56%900000.0000000000
17Colin WhiteWolves (Car)C6000340763140.00%0599.9900000000000050.00%200000.0000000000
18Kale ClagueWolves (Car)D6000180654230.00%812621.12000425000023000.00%000000.0000000000
Team Total or Average10313253823700109102148341088.78%33168616.382463323100032033053.07%37500000.4500000331
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Collin DeliaWolves (Car)63300.9191.6536321101230000.000060100
Team Total or Average63300.9191.6536321101230000.000060100


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Akil ThomasC252000-01-02No195 Lbs6 ft0NoNoNo4RFAPro & Farm300,000$0$0$NoLink / NHL Link
Alex BelzileRW341991-08-31No196 Lbs6 ft0NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Amadeus LombardiC222003-06-05No165 Lbs5 ft10NoNoNo3ELCPro & Farm500,000$0$0$NoLink / NHL Link
Brad LambertC212003-12-19No173 Lbs6 ft1NoNoNo3ELCPro & Farm900,000$0$0$NoLink / NHL Link
Cody GlassC/RW261999-04-01No201 Lbs6 ft3NoNoNo1RFAPro & Farm500,000$0$0$NoLink / NHL Link
Colin WhiteC281997-01-30No195 Lbs6 ft1NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Collin DeliaG311994-06-20No208 Lbs6 ft2NoNoNo3UFAPro & Farm750,000$0$0$NoLink / NHL Link
David SpacekD222003-02-18No174 Lbs6 ft0NoNoNo3ELCPro & Farm500,000$0$0$NoLink / NHL Link
Dylan WellsG271998-01-03No190 Lbs6 ft2NoNoNo4UFAPro & Farm500,000$0$0$NoLink / NHL Link
Ethan ProwD321992-11-17No182 Lbs5 ft11NoNoNo3UFAPro & Farm400,000$0$0$NoLink / NHL Link
Frank NazarC212004-01-14No190 Lbs5 ft10NoNoNo4ELCPro & Farm900,000$0$0$NoLink
Gerry MayhewC321992-12-31No161 Lbs5 ft9NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Jack JohnsonD381987-01-13No225 Lbs6 ft2NoNoNo3UFAPro & Farm800,000$0$0$NoLink / NHL Link
Jack LaFontaineG271998-01-06No204 Lbs6 ft2NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Kale ClagueD271998-06-05No190 Lbs6 ft0NoNoNo3UFAPro & Farm500,000$0$0$NoLink / NHL Link
Lucas JohansenD271997-11-16No176 Lbs6 ft2NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Lukas RousekRW261999-04-20No171 Lbs5 ft11NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Madison BoweyD301995-04-22No202 Lbs6 ft2NoNoNo1UFAPro & Farm300,000$0$0$NoLink
Nils HoglanderLW/RW242000-12-20No185 Lbs5 ft9NoNoNo4RFAPro & Farm500,000$0$0$NoLink / NHL Link
Philippe MyersD281997-01-25No219 Lbs6 ft5NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Sammy BlaisLW/RW291996-06-17No206 Lbs6 ft2NoNoNo2UFAPro & Farm1,000,000$0$0$NoLink / NHL Link
Ty GallagherD222003-03-06No188 Lbs6 ft0NoNoNo4ELCPro & Farm300,000$0$0$NoLink
Valtteri PuustinenRW261999-06-04No182 Lbs5 ft10NoNoNo1RFAPro & Farm500,000$0$0$NoLink / NHL Link
Zemgus GirgensonsC/LW/RW311994-01-05No192 Lbs6 ft3NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2427.33190 Lbs6 ft12.25522,917$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nils HoglanderFrank Nazar40122
2Zemgus GirgensonsBrad LambertAlex Belzile30122
3Sammy BlaisAkil ThomasValtteri Puustinen20122
4Colin WhiteAmadeus LombardiLukas Rousek10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jack JohnsonPhilippe Myers40122
2Kale ClagueLucas Johansen30122
3David SpacekEthan Prow20122
4Jack JohnsonPhilippe Myers10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nils HoglanderFrank Nazar60122
2Zemgus GirgensonsBrad LambertAlex Belzile40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Jack JohnsonPhilippe Myers60122
2Kale ClagueLucas Johansen40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Nils Hoglander60122
2Frank NazarZemgus Girgensons40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Jack JohnsonPhilippe Myers60122
2Kale ClagueLucas Johansen40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Jack JohnsonPhilippe Myers60122
2Frank Nazar40122Kale ClagueLucas Johansen40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Nils Hoglander60122
2Frank NazarZemgus Girgensons40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jack JohnsonPhilippe Myers60122
2Kale ClagueLucas Johansen40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Nils HoglanderFrank NazarJack JohnsonPhilippe Myers
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Nils HoglanderAkil ThomasJack JohnsonPhilippe Myers
Extra Forwards
Normal PowerPlayPenalty Kill
Sammy Blais, Alex Belzile, Valtteri PuustinenSammy Blais, Alex BelzileSammy Blais
Extra Defensemen
Normal PowerPlayPenalty Kill
Lucas Johansen, David Spacek, Ethan ProwLucas JohansenLucas Johansen, David Spacek
Penalty Shots
Nils Hoglander, Zemgus Girgensons, , Frank Nazar, Sammy Blais
Goalie
#1 : Collin Delia, #2 : Dylan Wells


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
66W1132538148123337210901
All Games
GPWLOTWOTL SOWSOLGFGA
62310001310
Home Games
GPWLOTWOTL SOWSOLGFGA
311100094
Visitor Games
GPWLOTWOTL SOWSOLGFGA
312000046
Last 10 Games
WLOTWOTL SOWSOL
231000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2926.90%35488.57%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
53533933721
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
9618751.34%8216848.81%367349.32%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
163116128427237


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
9 - 2025-08-2318Admirals3Wolves1LBoxScore
16 - 2025-08-3047Wolves2Bears1WBoxScore
17 - 2025-08-3159Wolves1Bears2LBoxScore
22 - 2025-09-0577Wolves1Admirals3LBoxScore
23 - 2025-09-0691Admirals1Wolves2WXBoxScore
26 - 2025-09-09101Wild0Wolves6WBoxScore
30 - 2025-09-13130Wolves-IceHogs-
37 - 2025-09-20162Wolves-Admirals-
38 - 2025-09-21174Admirals-Wolves-
43 - 2025-09-26193Wolves-Griffins-
44 - 2025-09-27211Moose-Wolves-
45 - 2025-09-28218IceHogs-Wolves-
49 - 2025-10-02228Wolves-Moose-
51 - 2025-10-04241Wolves-Moose-
57 - 2025-10-10275Wolves-IceHogs-
58 - 2025-10-11288Griffins-Wolves-
59 - 2025-10-12297IceHogs-Wolves-
64 - 2025-10-17313Wolves-Griffins-
65 - 2025-10-18327Griffins-Wolves-
66 - 2025-10-19334Griffins-Wolves-
71 - 2025-10-24358Wolves-Stars-
72 - 2025-10-25369Wolves-Stars-
76 - 2025-10-29386Admirals-Wolves-
78 - 2025-10-31404Wolves-Wild-
79 - 2025-11-01418Wild-Wolves-
85 - 2025-11-07434Wolves-Admirals-
86 - 2025-11-08448Admirals-Wolves-
91 - 2025-11-13470Wild-Wolves-
93 - 2025-11-15489IceHogs-Wolves-
94 - 2025-11-16496IceHogs-Wolves-
100 - 2025-11-22532Wolves-Firebirds-
101 - 2025-11-23541Wolves-Firebirds-
104 - 2025-11-26551Wolves-Griffins-
107 - 2025-11-29573Condors-Wolves-
108 - 2025-11-30582Condors-Wolves-
111 - 2025-12-03593Wolves-Monsters-
112 - 2025-12-04600Wolves-Monsters-
114 - 2025-12-06622Wolves-IceHogs-
118 - 2025-12-10641Moose-Wolves-
120 - 2025-12-12654Wolves-IceHogs-
121 - 2025-12-13669Moose-Wolves-
127 - 2025-12-19686Wolves-Condors-
128 - 2025-12-20704Wolves-Condors-
134 - 2025-12-26727Wolves-IceHogs-
135 - 2025-12-27736Monsters-Wolves-
136 - 2025-12-28748Monsters-Wolves-
140 - 2026-01-01767Admirals-Wolves-
142 - 2026-01-03785Wild-Wolves-
143 - 2026-01-04797IceHogs-Wolves-
146 - 2026-01-07810Wolves-Wild-
149 - 2026-01-10834Wolves-Stars-
150 - 2026-01-11843Wolves-Stars-
Trade Deadline --- Trades can’t be done after this day is simulated!
155 - 2026-01-16864Wolves-Admirals-
156 - 2026-01-17878Griffins-Wolves-
157 - 2026-01-18887Stars-Wolves-
161 - 2026-01-22901Moose-Wolves-
163 - 2026-01-24918Bears-Wolves-
164 - 2026-01-25929Bears-Wolves-
169 - 2026-01-30954Stars-Wolves-
171 - 2026-02-01975Stars-Wolves-
173 - 2026-02-03981Wolves-IceHogs-
174 - 2026-02-04987Wolves-Wild-
177 - 2026-02-071011Firebirds-Wolves-
178 - 2026-02-081021Firebirds-Wolves-
181 - 2026-02-111031Wolves-Griffins-
184 - 2026-02-141049Wolves-Moose-
185 - 2026-02-151064Wolves-Moose-
191 - 2026-02-211097Wolves-Admirals-
192 - 2026-02-221109Stars-Wolves-
195 - 2026-02-251119Wolves-Wild-
197 - 2026-02-271131Wolves-Admirals-
198 - 2026-02-281146IceHogs-Wolves-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance5,9482,844
Attendance PCT99.13%94.80%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
33 2931 - 97.69% 73,580$220,739$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
145,938$ 125,500$ 125,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 15,938$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,428,129$ 174 5,628$ 979,272$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
1282126600400156424-268416330020080212-132416330020076212-136281563004561006655352153072172370433289577241576394369.14%2887773.26%1769217535.36%870269132.33%423126133.54%13629152655610907376
137617002300127409-282380350030067214-147381350200060195-13591272453721004744341736057557558231959386031263345267.54%2396572.80%2565181231.18%751251829.83%369118931.03%10496782684584834315
13765417001222841591253826900102140796138288000201448064115284494778011090959722850743747781167250291013864278920.84%3975386.65%61551243863.62%1247217357.39%643109558.72%204215101675508862444
14762730100080462-382381370000042228-186381360100038234-19668015623610029262414970490522481358810156991223226114.87%2907773.45%1392164323.86%590274621.49%275116923.52%9235832850558789281
147648170241425714411338246023121286860382411001021297653110257478735070104708022750738744773159251685712833456819.71%3583590.22%51471236362.25%1216202959.93%653109659.58%216816051540507894477
14762730100080462-382381370000042228-186381360100038234-19668015623610029262414970490522481358810156991223226114.87%2907773.45%1392164323.86%590274621.49%275116923.52%9235832850558789281
147648170241425714411338246023121286860382411001021297653110257478735070104708022750738744773159251685712833456819.71%3583590.22%51471236362.25%1216202959.93%653109659.58%216816051540507894477
14762730100080462-382381370000042228-186381360100038234-19668015623610029262414970490522481358810156991223226114.87%2907773.45%1392164323.86%590274621.49%275116923.52%9235832850558789281
147648170241425714411338246023121286860382411001021297653110257478735070104708022750738744773159251685712833456819.71%3583590.22%51471236362.25%1216202959.93%653109659.58%216816051540507894477
1582373005352236188484121130204112991384116170331110797109923642065611301026064210406916956882132603105015114186816.27%4485787.28%61316244253.89%1247253549.19%590116250.77%207114721926567968493
1582502003324293180113412950221216991784121150111212489351172935338261130123927325680851819871211760098914604168119.47%3935187.02%21482256557.78%1376256153.73%642118554.18%210615371903564948482
1582373005352236188484121130204112991384116170331110797109923642065611301026064210406916956882132603105015114186816.27%4485787.28%61316244253.89%1247253549.19%590116250.77%207114721926567968493
1582502003324293180113412950221216991784121150111212489351172935338261130123927325680851819871211760098914604168119.47%3935187.02%21482256557.78%1376256153.73%642118554.18%210615371903564948482
16824622032542691421274125120100313264684121100225113778591142694627311160111816924770855792797185450295213794278118.97%3914787.98%61609256862.66%1344227159.18%700111562.78%233017481716535929490
168251210323224312911441299001201306367412212031121136647118243406649019079867222090701782710182555188815544018120.20%3734388.47%11199242849.38%1038236743.85%521106049.15%217816051843536932488
17725413012202981141843627601020157551023627700200141598211629854684401501251016925450855837844137441875312443859524.68%3152990.79%31661252165.89%1077176960.88%674103565.12%219016601333438815449
177242220412130817912936231002010169888136191202111139914898308477785090128997525670841868848197157177315453757820.80%3365384.23%21036229945.06%903218141.40%517110446.83%190514391666462772386
1872204202611225354-12936122000301118177-593682202310107177-705322542064510082776324060781769840310594062214122744215.33%2666675.19%2866194144.62%929230540.30%499120241.51%145410462107485788352
1970105206200211389-1783562304200111195-843542902000100194-9434211414625200856159244608387808083603104461615122213013.57%2516972.51%2836190443.91%1052258540.70%510124540.96%12849002171478758327
206230100013103311010009453120000046-26132538013721148535339312333721092926.90%35488.57%09618751.34%8216848.81%367349.32%163116128427237
Total Regular Season147461669804747323442034863-66073733032302325181822192403-18473728637502422141619842460-476147142037597118001314431669129311604163253137311373813797460881345515659264406659109516.44%6517105883.77%59213734230550.52%199574554543.82%101402186846.37%33594242113881610143165577899
Playoff
131912700000584513107300000352114954000002324-124589615401025171550401731541644421303273351371813.14%1241885.48%034160656.27%29556152.58%15327855.04%471338478142221105
142011900000403281174000002214894500000181802240741141201751649401501361883841112243391161412.07%911089.01%130863248.73%30857153.94%12925450.79%529376459150251130
1540400000619-1320200000210-82020000049-50612180003036802920191203163952214.55%26773.08%0399939.39%3412527.20%186428.13%8658105294722
151495000003824148620000021138633000001711618386810613019910350011711711626373151232871719.54%64690.63%026143360.28%21538356.14%11418860.64%35224532210517188
161911800000373701055000001819-1963000001918122376810504019784840134133159402114249348142117.75%1031486.41%032866849.10%26157445.47%14326653.76%521358485157264138
16624000001114-3321000008713030000037-441115260002361470443949149485711239820.51%24675.00%07920638.35%6119830.81%359038.89%148102173518139
171275000004928217520000030121852300000191631449841330101113234930131147176258781322041002020.00%591476.27%031252159.88%19833758.75%12519962.81%3652712708714477
17514000001522-72020000069-331200000913-421519340001023137043335419447568638513.16%27581.48%05716933.73%5018826.60%197824.36%11683152395726
1840400000129-2820200000013-1320200000116-1501230001006202317221984232751715.88%15660.00%0177722.08%2815118.54%156722.39%4729150294115
Total Playoff1035350000002552505553223000001421182448212700000113132-1910625543869321101075684273908447969472410674129118266989513.61%5338683.86%11742341151.07%1450308846.96%751148450.61%2639186525997921282642