Monsters

GP: 6 | W: 1 | L: 5 | OTL: 0 | P: 2
GF: 10 | GA: 35 | PP%: 13.33% | PK%: 70.37%
GM : Patrick Auger | Morale : 50 | Team Overall : 62
Next Games #125 vs Marlies

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Anthony Angello0XX100.008243745991748058635756615569714550620
2Pierrick Dube0X100.006037756264898461635961586264664350610
3Nikita Pavlychev0X100.008653715795747756655855595668704150610
4Robert Bortuzzo0X100.007371696288816761306050764579763150670
5Ty Smith0X100.005938786567838066306867625565668050640
6Louie Belpedio0X100.006340666472808263306562645369715250640
7Cade Webber0X100.008953815898637056305452614564666050630
8Braden Hache0X100.007751505686646554305755594762644950600
9Kyle Masters0X100.005536935670636555305452534562646050560
Scratches
1Jake Leschyshyn0X100.006538816372738262676059646266686450620
2Dylan Gambrell0X100.006037886469798258686059625669715550620
TEAM AVERAGE100.00704575617975765946595762536768535062
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jan Bednar100.00687167866766686766686763696050680
2Tristan Lennox100.00597268825857595857595863696250620
Scratches
TEAM AVERAGE100.0064726884636264636264636369615065
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bob Boughner63647068817568CAN5441,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Anthony AngelloC/RW291996-03-06No210 Lbs6 ft5NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Braden HacheD222003-05-21No200 Lbs6 ft4NoNoNo2ELCPro & Farm300,000$0$0$NoLink
Cade WebberD242001-01-05No212 Lbs6 ft7NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Dylan GambrellC291996-08-26No185 Lbs5 ft11NoNoNo2UFAPro & Farm300,000$0$0$NoLink / NHL Link
Jake LeschyshynC261999-03-10No198 Lbs5 ft11NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Jan BednarG232002-08-26No200 Lbs6 ft4NoNoNo4RFAPro & Farm300,000$0$0$NoLink
Kyle MastersD222003-04-09No177 Lbs6 ft0NoNoNo1ELCPro & Farm300,000$0$0$NoLink / NHL Link
Louie BelpedioD291996-05-14No197 Lbs5 ft11NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Nikita PavlychevC281997-03-23No200 Lbs6 ft7NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Pierrick DubeRW242001-01-07No172 Lbs5 ft9NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Robert BortuzzoD361989-03-18No206 Lbs6 ft4NoNoNo2UFAPro & Farm800,000$0$0$NoLink / NHL Link
Tristan LennoxG232002-10-21No193 Lbs6 ft3NoNoNo4RFAPro & Farm300,000$0$0$NoLink
Ty SmithD252000-03-24No180 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1326.15195 Lbs6 ft22.00384,615$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
230122
320122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
230122
320122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , , ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
62L2102030130301785611400
All Games
GPWLOTWOTL SOWSOLGFGA
60510001035
Home Games
GPWLOTWOTL SOWSOLGFGA
101000007
Visitor Games
GPWLOTWOTL SOWSOLGFGA
50410001028
Last 10 Games
WLOTWOTL SOWSOL
051000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
15213.33%27870.37%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
27475511531
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
3311628.45%7522633.19%269527.37%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
7447226436022


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
9 - 2025-08-2312Monsters0Bears7LBoxScore
10 - 2025-08-2428Monsters1Bears8LBoxScore
15 - 2025-08-2933Monsters2Checkers5LBoxScore
16 - 2025-08-3046Monsters6Checkers5WXBoxScore
20 - 2025-09-0366Monsters1Americans3LBoxScore
23 - 2025-09-0686Americans7Monsters0LBoxScore
30 - 2025-09-13125Marlies-Monsters-
31 - 2025-09-14137Griffins-Monsters-
34 - 2025-09-17143Americans-Monsters-
36 - 2025-09-19149Monsters-Comets-
37 - 2025-09-20160Monsters-Crunch-
39 - 2025-09-22180Monsters-Comets-
41 - 2025-09-24184Marlies-Monsters-
43 - 2025-09-26194Monsters-Bruins-
45 - 2025-09-28216Monsters-Bruins-
51 - 2025-10-04243Admirals-Monsters-
52 - 2025-10-05254Admirals-Monsters-
55 - 2025-10-08265Monsters-Americans-
57 - 2025-10-10269Marlies-Monsters-
59 - 2025-10-12296Monsters-Griffins-
61 - 2025-10-14298Monsters-Admirals-
64 - 2025-10-17310Crunch-Monsters-
65 - 2025-10-18321Crunch-Monsters-
70 - 2025-10-23351Phantoms-Monsters-
72 - 2025-10-25367Phantoms-Monsters-
76 - 2025-10-29388Comets-Monsters-
77 - 2025-10-30397Comets-Monsters-
80 - 2025-11-02421Americans-Monsters-
86 - 2025-11-08442Griffins-Monsters-
88 - 2025-11-10456Monsters-Admirals-
89 - 2025-11-11461Monsters-Griffins-
91 - 2025-11-13469Griffins-Monsters-
93 - 2025-11-15481Monsters-Marlies-
94 - 2025-11-16495Monsters-Marlies-
99 - 2025-11-21511Rocket-Monsters-
100 - 2025-11-22526Rocket-Monsters-
106 - 2025-11-28561Monsters-Griffins-
107 - 2025-11-29569Monsters-Griffins-
111 - 2025-12-03593Wolves-Monsters-
112 - 2025-12-04600Wolves-Monsters-
114 - 2025-12-06616Monsters-Crunch-
120 - 2025-12-12648Bruins-Monsters-
121 - 2025-12-13665Bruins-Monsters-
127 - 2025-12-19680Monsters-Phantoms-
128 - 2025-12-20693Monsters-Penguins-
131 - 2025-12-23707Americans-Monsters-
135 - 2025-12-27736Monsters-Wolves-
136 - 2025-12-28748Monsters-Wolves-
139 - 2025-12-31762Monsters-Americans-
143 - 2026-01-04792Senators-Monsters-
144 - 2026-01-05802Senators-Monsters-
148 - 2026-01-09816Checkers-Monsters-
149 - 2026-01-10829Checkers-Monsters-
153 - 2026-01-14852Monsters-Marlies-
Trade Deadline --- Trades can’t be done after this day is simulated!
155 - 2026-01-16860Bears-Monsters-
156 - 2026-01-17872Bears-Monsters-
162 - 2026-01-23909Monsters-Stars-
163 - 2026-01-24920Monsters-Stars-
169 - 2026-01-30947Monsters-Rocket-
170 - 2026-01-31957Monsters-Rocket-
171 - 2026-02-01973Monsters-Senators-
174 - 2026-02-04984Monsters-Senators-
176 - 2026-02-06992Stars-Monsters-
177 - 2026-02-071005Stars-Monsters-
183 - 2026-02-131040Penguins-Monsters-
184 - 2026-02-141054Penguins-Monsters-
188 - 2026-02-181073Griffins-Monsters-
191 - 2026-02-211091Marlies-Monsters-
192 - 2026-02-221108Monsters-Marlies-
195 - 2026-02-251117Monsters-Americans-
197 - 2026-02-271128Monsters-Phantoms-
198 - 2026-02-281139Monsters-Penguins-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance2,0001,000
Attendance PCT100.00%100.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
35 3000 - 100.00% 74,800$74,800$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
135,855$ 50,000$ 50,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 5,855$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,618,000$ 174 5,250$ 913,500$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
12825322021312921741184126120102015187644127100111114187541182925328242901238579251208258688101662505138418105338315.57%5727087.76%91707271062.99%1238224555.14%709116360.96%237217381629547947509
13764621011342421509238211200113115744138259010211277651105242417659112092786820700668676715147144598814065299517.96%4315487.47%61490244360.99%1204208657.72%659104563.06%213515611561528899478
147642220314427115611538231101012137766138191102132134805410327148475511101127775229907587477731757503112314523345416.17%4315687.01%41366241056.68%1321230557.31%640110957.71%204314781655527908469
147642220314427115611538231101012137766138191102132134805410327148475511101127775229907587477731757503112314523345416.17%4315687.01%41366241056.68%1321230557.31%640110957.71%204314781655527908469
147642220314427115611538231101012137766138191102132134805410327148475511101127775229907587477731757503112314523345416.17%4315687.01%41366241056.68%1321230557.31%640110957.71%204314781655527908469
1582343404325227179484121160111111980394113180321410899988227424651080877856235007557468211907583113714524056516.05%4536685.43%11490259557.42%1305235755.37%645113956.63%218115761808570980504
1582343404325227179484121160111111980394113180321410899988227424651080877856235007557468211907583113714524056516.05%4536685.43%11490259557.42%1305235755.37%645113956.63%218115761808570980504
16824425035322481608841201302321119833641241201211129775210724845570308089827122140767715713179353496013894577716.85%4064888.18%71469247859.28%1211226453.49%681113360.11%227616741741544943502
177231330242023521322361814013001171071036131901120118106127423541064539092746519800646688633183255482313793658021.92%3326979.22%31131211353.53%1039202751.26%560108751.52%192414161601469816425
1872254402100229296-6736112202100111147-3636142200000118149-315522940062911099646422560756758739239874083513862944314.63%3487179.60%21072214050.09%981208547.05%565111150.86%172112611811474789385
1970135303100174363-189368260200090173-83345270110084190-1063317432049400068485521190660741708275573767913002896522.49%2937873.38%3820207139.59%770216335.60%428115237.15%143810202003479766349
20605010001035-251010000007-7504010001028-1821020300015311302747551301785611415213.33%27870.37%03311628.45%7522633.19%269527.37%7447226436022
Total Regular Season85240633703122272926972217480425215165013101012135210662864271911720181217171345115119497926974854755110881107882174024878278153823482802129762681136816044429473717.16%460869884.85%44148002649155.87%130912472552.95%68381239155.19%224361630919157581099095090
Playoff
122016400000491930108200000219121082000002810183249831320601218174660143156146405121392396141149.93%1661093.98%338167356.61%36566654.80%16827960.22%509338516168266131
13514000001012-2211000005323030000059-4210172700053295038263112245807533515.15%36586.11%05813842.03%6416339.26%407652.63%10871129386230
141899000003743-61037000001026-16862000002717101837691060201610945201731271344371222623861071312.15%1161487.93%128158148.36%30161548.94%12625848.84%455313458143242118
Total Playoff43261700000967422221210000003638-221147000006036245296169265080333128101303543093119642887348572813211.39%3182990.88%4720139251.72%730144450.55%33461354.49%10737231104350570280