Wranglers

GP: 9 | W: 1 | L: 8 | OTL: 0 | P: 2
GF: 25 | GA: 52 | PP%: 13.33% | PK%: 83.33%
GM : Martin Thibault | Morale : 50 | Team Overall : 62
Next Games #111 vs Gulls

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Sheldon Dries0XXX100.005638796465918263675965586371733450630
2Mitchell Stephens0X100.006638896275788558786059675668706450630
3James Hamblin0X100.005936906667827764676162606567684250630
4Justin Dowling0XX100.006635936466788262746061626375772350630
5Gemel Smith0X100.006244616071776462716458576071734850610
6Kyle Clifford0X100.007586506084777258625960575674764150610
7Carl Berglund0X100.007338945882767056645753595465674250600
8Luke Toporowski0X100.006039806169848258626059565864664350600
9Corey Andonovski0X100.006742675776718154595556585466684250590
10Adam Raska0X100.006865625766698256545755565364664850580
11Roland McKeown0X100.006740765976748658305958574869715850620
12Tyler Wotherspoon0X100.007338935982668656305852574572744350620
Scratches
1Mike Vecchione0X100.006037896169818560635961566272742750620
TEAM AVERAGE100.00664479617377805960595858576971435061
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
TEAM AVERAGE0.000000000000000000
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bob Woods63656869868061CAN5761,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam RaskaRW242001-09-25No178 Lbs5 ft10NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Carl BerglundC252000-01-16No207 Lbs6 ft2NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Corey AndonovskiRW261999-03-26No195 Lbs6 ft1NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Gemel SmithC311994-04-16No203 Lbs5 ft10NoNoNo4UFAPro & Farm400,000$0$0$NoLink
James HamblinLW261999-04-27No185 Lbs5 ft10NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Justin DowlingC/LW351990-10-01No180 Lbs5 ft10NoNoNo1UFAPro & Farm400,000$0$0$NoLink / NHL Link
Kyle CliffordLW341991-01-13No217 Lbs6 ft2NoNoNo1UFAPro & Farm400,000$0$0$NoLink / NHL Link
Luke ToporowskiLW242001-04-12No183 Lbs5 ft11NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Mike VecchioneLW321993-02-25No193 Lbs5 ft10NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Mitchell StephensC281997-02-05No203 Lbs6 ft0NoNoNo2UFAPro & Farm300,000$0$0$NoLink / NHL Link
Roland McKeownD291996-01-20No195 Lbs6 ft1NoNoNo4UFAPro & Farm370,000$0$0$NoLink / NHL Link
Sheldon DriesC/LW/RW311994-04-23No180 Lbs5 ft9NoNoNo2UFAPro & Farm500,000$0$0$NoLink / NHL Link
Tyler WotherspoonD321993-03-12No207 Lbs6 ft2NoNoNo2UFAPro & Farm380,000$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1329.00194 Lbs6 ft01.92365,385$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
230122
320122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
230122
320122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , , ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
92L72548732645301178719900
All Games
GPWLOTWOTL SOWSOLGFGA
91800002552
Home Games
GPWLOTWOTL SOWSOLGFGA
51400001326
Visitor Games
GPWLOTWOTL SOWSOLGFGA
40400001226
Last 10 Games
WLOTWOTL SOWSOL
180000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
15213.33%42783.33%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
948189011860
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
8323335.62%12934936.96%5814839.19%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
141892956410343


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
8 - 2025-08-226Canucks6Wranglers4LBoxScore
10 - 2025-08-2424Canucks2Wranglers4WBoxScore
13 - 2025-08-2731Wranglers2Firebirds8LBoxScore
15 - 2025-08-2942Wranglers4Silver Knights6LBoxScore
16 - 2025-08-3053Wranglers2Silver Knights7LBoxScore
19 - 2025-09-0265Wranglers4Condors5LBoxScore
22 - 2025-09-0579Eagles6Wranglers1LBoxScore
24 - 2025-09-0796Eagles6Wranglers1LBoxScore
26 - 2025-09-09102Gulls6Wranglers3LBoxScore
28 - 2025-09-11111Gulls-Wranglers-
33 - 2025-09-16139Condors-Wranglers-
34 - 2025-09-17145Condors-Wranglers-
37 - 2025-09-20166Silver Knights-Wranglers-
38 - 2025-09-21171Silver Knights-Wranglers-
44 - 2025-09-27213Wranglers-Barracuda-
45 - 2025-09-28219Wranglers-Barracuda-
48 - 2025-10-01225Wranglers-Gulls-
50 - 2025-10-03237Wranglers-Roadrunners-
51 - 2025-10-04252Wranglers-Roadrunners-
57 - 2025-10-10274Wranglers-Moose-
59 - 2025-10-12294Wranglers-Moose-
64 - 2025-10-17316Roadrunners-Wranglers-
65 - 2025-10-18328Roadrunners-Wranglers-
68 - 2025-10-21342Moose-Wranglers-
69 - 2025-10-22349Moose-Wranglers-
72 - 2025-10-25372Wranglers-Firebirds-
73 - 2025-10-26379Wranglers-Firebirds-
76 - 2025-10-29395Wranglers-Reign-
78 - 2025-10-31406Silver Knights-Wranglers-
80 - 2025-11-02424Silver Knights-Wranglers-
88 - 2025-11-10457Canucks-Wranglers-
90 - 2025-11-12467Canucks-Wranglers-
92 - 2025-11-14478Moose-Wranglers-
94 - 2025-11-16499Moose-Wranglers-
99 - 2025-11-21518Wranglers-Eagles-
100 - 2025-11-22533Wranglers-Eagles-
103 - 2025-11-25543Roadrunners-Wranglers-
104 - 2025-11-26553Roadrunners-Wranglers-
107 - 2025-11-29576Wranglers-Gulls-
108 - 2025-11-30586Wranglers-Reign-
110 - 2025-12-02591Wranglers-Reign-
114 - 2025-12-06626Gulls-Wranglers-
115 - 2025-12-07627Gulls-Wranglers-
120 - 2025-12-12659Wranglers-Canucks-
121 - 2025-12-13675Wranglers-Canucks-
127 - 2025-12-19688Wranglers-Silver Knights-
128 - 2025-12-20702Wranglers-Silver Knights-
135 - 2025-12-27738Reign-Wranglers-
137 - 2025-12-29755Reign-Wranglers-
142 - 2026-01-03790Wranglers-Firebirds-
143 - 2026-01-04799Wranglers-Reign-
146 - 2026-01-07811Wranglers-Gulls-
148 - 2026-01-09822Canucks-Wranglers-
149 - 2026-01-10835Canucks-Wranglers-
152 - 2026-01-13847Firebirds-Wranglers-
153 - 2026-01-14855Firebirds-Wranglers-
Trade Deadline --- Trades can’t be done after this day is simulated!
156 - 2026-01-17870Wranglers-Moose-
157 - 2026-01-18885Wranglers-Moose-
163 - 2026-01-24924Wranglers-Canucks-
164 - 2026-01-25933Wranglers-Canucks-
169 - 2026-01-30956Firebirds-Wranglers-
171 - 2026-02-01971Firebirds-Wranglers-
176 - 2026-02-06998Wranglers-Condors-
177 - 2026-02-071014Wranglers-Gulls-
180 - 2026-02-101027Wranglers-Roadrunners-
181 - 2026-02-111035Wranglers-Roadrunners-
184 - 2026-02-141050Reign-Wranglers-
186 - 2026-02-161071Reign-Wranglers-
190 - 2026-02-201089Wranglers-Canucks-
191 - 2026-02-211105Wranglers-Canucks-
197 - 2026-02-271123Barracuda-Wranglers-
199 - 2026-03-011152Barracuda-Wranglers-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance9,6824,778
Attendance PCT96.82%95.56%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
31 2892 - 96.40% 72,255$361,275$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
136,436$ 50,500$ 50,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 6,436$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,239,905$ 174 5,252$ 913,848$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
1282442601632290223674120140042114611036412412012111441133110429046075016010710178268408658879182135579130717404766914.50%5328184.77%91636269160.80%1386242257.23%765127759.91%218816041841547926468
136828310611122321493413150311111410773415160300010910727222338460734084706219410654592674188450499113053676918.80%4077082.80%51138201456.50%1070205452.09%566103354.79%166512061674467761374
14683228032122291676234141700111110822834181103101119853476229390619260101754923470752763813244565863212662683513.06%2614781.99%11003205748.76%1079261441.28%45296047.08%144810501913472739338
14683228032122291676234141700111110822834181103101119853476229390619260101754923470752763813244565863212662683513.06%2614781.99%11003205748.76%1079261441.28%45296047.08%144810501913472739338
14683228032122291676234141700111110822834181103101119853476229390619260101754923470752763813244565863212662683513.06%2614781.99%11003205748.76%1079261441.28%45296047.08%144810501913472739338
15824725042222941901044124100410215584714123150012013910633110294480774180123828329380989968952216661885413334476213.87%3746083.96%01719282960.76%1409254155.45%724119660.54%207515391967552909450
15824725042222941901044124100410215584714123150012013910633110294480774180123828329380989968952216661885413334476213.87%3746083.96%01719282960.76%1409254155.45%724119660.54%207515391967552909450
1682165902311259414-1554192901101129198-694173001210130216-8642259383642100102866827310905914903299384483014314094911.98%35610071.91%21109257843.02%889244736.33%548136440.18%174612782327553863383
177240220423125518768361810032301268046362212010011291072297255464719112093847122200714752740198557384313063806216.32%3265084.66%21330225159.08%1152213154.06%593108354.76%179212901735493825415
1872184902300203359-15636112302000107176-69367260030096183-874320337157411084566123360798746783305991266014292783512.59%2977674.41%1809199440.57%865237136.48%456117138.94%139910032172479757335
1970115403101200386-186347260100097192-953642802101103194-913020038558520082744123530770812764347397357614872283615.79%2195276.26%2790188641.89%940242538.76%473119539.58%12418642210477758327
20918000002552-27514000001326-13404000001226-142254873001186026494818905301178719915213.33%42783.33%08323335.62%12934936.96%5814839.19%141892956410343
Total Regular Season8233483830352615162730271614411169192018139101372130369412179191017136613581413-5583827304625735517571111098666942744694902190179125277267712889815361385155114.31%371069781.21%24133422547652.37%124862712346.03%62631254349.93%186711356821932560490334266
Playoff
115140000069-32020000013-23120000056-12610160002219602630391254279923638.33%36391.67%06415541.29%9016753.89%305851.72%10466134416128
12514000001021-112020000038-531200000713-62101828000424115038393811729789127311.11%37975.68%08815855.70%7613655.88%487762.34%10874131396026
15514000001015-52020000016-531200000990210172700062217106567391394663892015.00%24579.17%012018564.86%7613456.72%427060.00%12292123315325
17624000001527-1230300000718-113210000089-141525400006721580495851233907311927518.52%31293.55%06917040.59%9521444.39%439644.79%12485170416530
Total Playoff21516000004172-31909000001235-231257000002937-81041701110001813954001781941676142072933911101210.91%1281985.16%034166851.05%33765151.77%16330154.15%460318559154240111