Admirals

GP: 60 | W: 45 | L: 13 | OTL: 2 | P: 92
GF: 337 | GA: 179 | PP%: 25.98% | PK%: 75.56%
GM : Julien Lessard | Morale : 50 | Team Overall : 62
Next Games #939 vs Phantoms

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Brandon Gignac0X100.006137846567848264726361666267745550640
2Austin Rueschhoff0X100.009085755699808257615859645567693750630
3Wade Allison0X100.007860776281848259575661635968696150630
4Maxim Groshev (R)0X100.007139896080797258615956576063656150600
5Rory Kerins (R)0X100.005836956167817059655860556162644950590
6Ryan Tverberg0X100.005537886364756958696156555762644950590
7Josh Lopina0X100.007039895779728455595356585563656250590
8Samuel Asselin0X100.005638755865778257615654525566684250580
9Jalen Luypen (R)0X100.006137825961737157605853545962644950570
10Tanner Kaspick0X100.006540765674718053595455525466685750570
11Connor Mackey0X100.007461586284797360306362655168703650650
12Ian Mitchell0X100.006338846973847764307160625365676950650
13Robin Salo0X100.006838866778768264306665615466687050650
14Antti Tuomisto (R)0X100.007640855885706856305755594763657650610
15William Wallinder (R)0X100.007639955885687256305452574562647750610
16Luke Krys0X100.006842715677686155305354574564664350590
Scratches
1Ruslan Iskhakov0X88.286237826562848666706763626864667250640
2Adam Wilsby0X74.846638885975698558305655574664665950610
TEAM AVERAGE97.89684382617576775950595859556567575061
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Clay Stevenson100.00797773857877797877797865734250750
2Jakub Dobes (R)100.00778076877675777675777663705650740
Scratches
TEAM AVERAGE100.0078797586777678777678776472495075
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jean-Francois Houle76637467757177CAN4981,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Maxim GroshevAdmirals (Nas)LW6053881416238108710241212429612.86%34130221.721625411122520000810071.43%7000042.16000016169
2Wade AllisonAdmirals (Nas)RW608853141631092524412649716241717.71%19127121.182317401442550000011268.97%87000172.22001132563
3Ruslan IskhakovAdmirals (Nas)C60406410452160481723838925310.44%41134122.359132271178011102574073.41%123000021.5501000775
4Brandon GignacAdmirals (Nas)C6038347250401084932787520813.67%3195715.96000001122776177.98%21800021.5000101552
5Austin RueschhoffAdmirals (Nas)RW603337704016650189722826417611.70%1792415.418122069186000006073.68%5700001.5100503027
6Robin SaloAdmirals (Nas)D6011395039160363868134116.18%3589314.904371734000129100.00%000001.1200000006
7Jalen LuypenAdmirals (Nas)LW5114324640808481254111811.20%778015.30481231151000002066.00%5000001.1800000120
8Connor MackeyAdmirals (Nas)D60638443910610153326812368.82%5488914.820771334000027100.00%000000.9900002020
9Rory KerinsAdmirals (Nas)C601925443827536401614711211.80%1172912.1500000000003171.43%3500001.2100100055
10David GustafssonNashville PredatorsC271314273075255694346513.83%1035213.06000001013291272.05%39000001.5300001105
11Adam WilsbyAdmirals (Nas)D58513181310041161971126.32%204858.380000000008000.00%000000.7400000100
12Antti TuomistoAdmirals (Nas)D60018181262108119189110.00%315028.370112300000000.00%000000.7200002001
13Luke KrysAdmirals (Nas)D600151513195496154150.00%161943.240001100004000.00%000001.5400100001
14Ryan TverbergAdmirals (Nas)C605611-100463041316.67%11031.722461224000000163.64%3300002.1300000000
15Josh LopinaAdmirals (Nas)C60314-1002281537.50%0260.43213415000000075.00%400003.0800000000
16Olen ZellwegerNashville PredatorsD3123-1003312178.33%54916.6611210600002000.00%000001.2000000001
17Samuel AsselinAdmirals (Nas)C600110001154000.00%6871.45000300001780061.11%1800000.2300000000
Team Total or Average91932948080948862413011018362474687178413.30%3381089211.85699216148911462241752245772.95%2192000251.49019113464545
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jakub DobesAdmirals (Nas)1615100.9401.4396305233860300.00001625101
2Clay StevensonAdmirals (Nas)99000.9291.6754001152120000.000090100
Team Total or Average2524100.9361.52150306385980300.00002525201


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam Wilsby (Out of Payroll)D242000-08-07No188 Lbs6 ft1NoNoNo3RFAPro & Farm300,000$0$0$YesLink / NHL Link
Antti TuomistoD242001-01-20Yes194 Lbs6 ft4NoNoNo4RFAPro & Farm900,000$0$0$NoNHL Link
Austin RueschhoffRW271997-09-07No230 Lbs6 ft7NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Brandon GignacC271997-11-07No170 Lbs5 ft11NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Clay StevensonG261999-03-03No195 Lbs6 ft4NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Connor MackeyD281996-09-12No204 Lbs6 ft3NoNoNo3UFAPro & Farm300,000$0$0$NoLink / NHL Link
Ian MitchellD261999-01-18No192 Lbs6 ft0NoNoNo1RFAPro & Farm500,000$0$0$NoLink / NHL Link
Jakub DobesG232001-05-27Yes205 Lbs6 ft4NoNoNo4RFAPro & Farm300,000$0$0$NoNHL Link
Jalen LuypenLW222002-06-28Yes155 Lbs5 ft10NoNoNo4ELCPro & Farm300,000$0$0$NoNHL Link
Josh LopinaC242001-02-16No195 Lbs6 ft2NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Luke KrysD242000-09-27No185 Lbs6 ft2NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Maxim GroshevLW232001-12-14Yes196 Lbs6 ft2NoNoNo4RFAPro & Farm300,000$0$0$NoNHL Link
Robin SaloD261998-10-13No190 Lbs6 ft2NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Rory KerinsC222002-04-12Yes175 Lbs5 ft11NoNoNo4ELCPro & Farm300,000$0$0$NoNHL Link
Ruslan Iskhakov (Out of Payroll)C242000-07-22No170 Lbs5 ft8NoNoNo3RFAPro & Farm500,000$0$0$YesLink / NHL Link
Ryan TverbergC232002-01-30No168 Lbs5 ft10NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Samuel AsselinC261998-07-01No180 Lbs5 ft9NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Tanner KaspickC271998-01-28No200 Lbs6 ft0NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Wade AllisonRW271997-10-14No205 Lbs6 ft2NoNoNo1RFAPro & Farm500,000$0$0$NoLink / NHL Link
William WallinderD222002-07-28Yes191 Lbs6 ft4NoNoNo4ELCPro & Farm500,000$0$0$NoNHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2024.75189 Lbs6 ft12.60370,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Maxim GroshevWade Allison40122
2Austin Rueschhoff30122
3Brandon GignacRory Kerins20122
4Brandon Gignac10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Connor MackeyRobin Salo30122
3Antti Tuomisto20122
4Luke Krys10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Maxim GroshevWade Allison60122
2Austin Rueschhoff40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Connor MackeyRobin Salo40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Brandon Gignac40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Connor MackeyRobin Salo40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Connor MackeyRobin Salo40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Brandon Gignac40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Connor MackeyRobin Salo40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Maxim GroshevWade Allison
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Maxim GroshevWade Allison
Extra Forwards
Normal PowerPlayPenalty Kill
Ryan Tverberg, Josh Lopina, Samuel AsselinRyan Tverberg, Josh LopinaSamuel Asselin
Extra Defensemen
Normal PowerPlayPenalty Kill
Antti Tuomisto, , Luke KrysAntti Tuomisto, Luke Krys
Penalty Shots
, , , Brandon Gignac, Wade Allison
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
6092W133755589225791635464738137306
All Games
GPWLOTWOTL SOWSOLGFGA
6044131101337179
Home Games
GPWLOTWOTL SOWSOLGFGA
322281100176102
Visitor Games
GPWLOTWOTL SOWSOLGFGA
28225000116177
Last 10 Games
WLOTWOTL SOWSOL
550000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2817325.98%2706675.56%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
7959148675136123771
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1201205258.53%815154552.75%552103853.18%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
185314561138325621345


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
8 - 2024-09-232Admirals3Griffins1WBoxScore
9 - 2024-09-2418Admirals6Wolves2WBoxScore
15 - 2024-09-3038Admirals5IceHogs3WBoxScore
16 - 2024-10-0149IceHogs0Admirals10WBoxScore
20 - 2024-10-0567Admirals7Wild1WBoxScore
22 - 2024-10-0777Wolves1Admirals7WBoxScore
23 - 2024-10-0891Admirals8Wolves1WBoxScore
29 - 2024-10-14117Admirals4Moose2WBoxScore
30 - 2024-10-15127Admirals6Moose4WBoxScore
37 - 2024-10-22162Wolves1Admirals7WBoxScore
38 - 2024-10-23174Admirals9Wolves0WBoxScore
41 - 2024-10-26183Moose1Admirals8WBoxScore
44 - 2024-10-29206Griffins3Admirals5WBoxScore
51 - 2024-11-05243Admirals6Monsters1WBoxScore
52 - 2024-11-06254Admirals7Monsters0WBoxScore
57 - 2024-11-11270Admirals5Griffins3WBoxScore
58 - 2024-11-12285IceHogs0Admirals9WBoxScore
61 - 2024-11-15298Monsters5Admirals9WBoxScore
65 - 2024-11-19323Admirals7Wild2WBoxScore
66 - 2024-11-20335Admirals5Wild2WBoxScore
71 - 2024-11-25357Wild0Admirals8WBoxScore
73 - 2024-11-27378Admirals7IceHogs0WBoxScore
76 - 2024-11-30386Admirals8Wolves1WBoxScore
78 - 2024-12-02400Admirals1Griffins2LBoxScore
79 - 2024-12-03416Stars2Admirals3WXBoxScore
85 - 2024-12-09434Wolves3Admirals10WBoxScore
86 - 2024-12-10448Admirals7Wolves4WBoxScore
88 - 2024-12-12456Monsters3Admirals7WBoxScore
92 - 2024-12-16476Wild3Admirals5WBoxScore
93 - 2024-12-17488Griffins2Admirals1LBoxScore
97 - 2024-12-21504Moose5Admirals8WBoxScore
99 - 2024-12-23517Stars4Admirals0LBoxScore
101 - 2024-12-25539Admirals11IceHogs2WBoxScore
103 - 2024-12-27542Admirals4Checkers8LBoxScore
104 - 2024-12-28547Admirals3Checkers4LXXBoxScore
107 - 2024-12-31574Admirals1Stars8LBoxScore
108 - 2025-01-01585Admirals6Stars8LBoxScore
111 - 2025-01-04596IceHogs4Admirals10WBoxScore
113 - 2025-01-06608Checkers2Admirals7WBoxScore
114 - 2025-01-07618Checkers5Admirals6WBoxScore
118 - 2025-01-11640Stars6Admirals3LBoxScore
120 - 2025-01-13653Moose2Admirals5WBoxScore
121 - 2025-01-14670Admirals8IceHogs2WBoxScore
127 - 2025-01-20683Griffins3Admirals4WBoxScore
128 - 2025-01-21697Griffins4Admirals2LBoxScore
131 - 2025-01-24708Admirals6IceHogs4WBoxScore
133 - 2025-01-26721Thunderbirds5Admirals4LXBoxScore
136 - 2025-01-29743Admirals6Moose3WBoxScore
137 - 2025-01-30754Admirals6Moose1WBoxScore
140 - 2025-02-02767Admirals8Wolves1WBoxScore
141 - 2025-02-03774Silver Knights9Admirals2LBoxScore
142 - 2025-02-04783Silver Knights4Admirals1LBoxScore
145 - 2025-02-07803Phantoms2Admirals6WBoxScore
148 - 2025-02-10820Wild3Admirals9WBoxScore
153 - 2025-02-15848Stars6Admirals2LBoxScore
155 - 2025-02-17864Wolves2Admirals6WBoxScore
156 - 2025-02-18876Wild3Admirals6WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
162 - 2025-02-24905Admirals1Griffins7LBoxScore
163 - 2025-02-25915Wolfpack7Admirals1LBoxScore
164 - 2025-02-26928IceHogs2Admirals5WBoxScore
167 - 2025-03-01939Admirals-Phantoms-
169 - 2025-03-03951Admirals-Thunderbirds-
170 - 2025-03-04962Admirals-Wolfpack-
173 - 2025-03-07980Moose-Admirals-
176 - 2025-03-101000Admirals-Silver Knights-
177 - 2025-03-111015Admirals-Silver Knights-
184 - 2025-03-181059Admirals-Stars-
185 - 2025-03-191068Admirals-Stars-
188 - 2025-03-221076Admirals-Wild-
191 - 2025-03-251097Wolves-Admirals-
192 - 2025-03-261110IceHogs-Admirals-
197 - 2025-03-311131Wolves-Admirals-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance60,60429,932
Attendance PCT94.69%93.54%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
4 2829 - 94.31% 70,678$2,261,706$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
899,202$ 66,000$ 0$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 65,052$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
282,713$ 33 5,357$ 176,781$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
12825914001442871311564131500131153609341289000131347163131287510797119010511167233207807927461650495121017125329618.05%4995489.18%31572264059.55%1248223955.74%705114861.41%232616931670555964519
137639210446224015783381814021211178235382170234112375481042404176570100847769194806126706431571504119915244097518.34%5206986.73%91352229258.99%1229222155.34%623106358.61%206514761645521906485
1476462002233259139120382213010021227151382470123113768691072594737320110100767822420699731792169646989813253545916.67%3563889.33%51418235560.21%1294220758.63%640111257.55%208415131611511902478
158248230522224614898412690221113374594122140301111374391142464516971120927770234407728287301809567102215414637816.85%4113791.00%51590262860.50%1365237657.45%629117353.62%221616031769563965507
1682492303133258149109412412011121317952412511020211277057114258466724017092857520590684652712194755293114754239221.75%3925386.48%41200232851.55%1196246748.48%541113247.79%216315811850551941482
1772244000710218306-8836151700400120144-24369230031098162-645721837359130091715522730775715774229466774014183517421.08%3106479.35%61039214748.39%933198147.10%547117546.55%170412431834487803388
18724522032003572401173624902100187115723621130110017012545983576399960401499710828260935892984187754168314413219429.28%3157576.19%51491231564.41%1058173560.98%780118166.05%216216641388412781428
196044130110133717915832228011001761027428225000011617784923375558920613612377125797959148675163546473813732817325.98%2706675.56%31201205258.53%815154552.75%552103853.18%185314561138325621345
Total Regular Season6023541760182019152202144975330318287091177113972741229917289099128106372234181722023884608657913683667152318603795617161475386144794259742111809313464120.45%307345685.16%40108631875757.91%91381677154.49%5017902255.61%165761223212908392768853636
Playoff
121064000003818205320000020515532000001813512387010804016138254087857921056130191501020.00%57787.72%317327363.37%15230050.67%7814155.32%2491772357111758
1316106000004232108440000019154862000002317620427511701024883530123121893781112942891102018.18%1291389.92%226348654.12%27453251.50%12623653.39%40928040011919499
14624000001114-3321000005503030000069-3411213210043414404350451474011210628414.29%35294.29%08818447.83%10119452.06%459050.00%151103151457737
1512750000030273734000001620-454100000147714305282110129930601071009934091127217671420.90%52982.69%014335240.63%14941236.17%6316937.28%2781973068613969
16126600000302916510000019118615000001118-712305686000111082690102807927489160176901718.89%641182.81%013536536.99%14937240.05%7118239.01%2861993099414971
Total Playoff5631250000015112031291712000007956232714130000072648621512744252606743371326046243639113493878239793456518.84%3374287.54%5802166048.31%825181045.58%38381846.82%13759581403417678336