Checkers

GP: 46 | W: 17 | L: 28 | OTL: 1 | P: 35
GF: 159 | GA: 183 | PP%: 15.35% | PK%: 77.82%
GM : Charles Boucher | Morale : 50 | Team Overall : 63
Next Games #778 vs Bears

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Brett Murray0X100.008375795695798457685859635566685950630
2John Hayden0XXX100.007681696288818259635864626170715350630
3Adam Beckman0X100.006738866477878363586062616064656750630
4Gage Goncalves0X100.006438816270788763736557586263656750620
5Hugh McGing0XX100.006538746264808459666358615766685450610
6Tristen Robins0X100.006135925966828058655756595863656950600
7Joel Teasdale0XX100.006838875977818357535558565965674250600
8Spencer Smallman0X100.006841775977758157545558565968704750600
9Michael Milne0X100.006039855969797856605857555962646650590
10Josh Currie0X100.005638805865817157655859545872742750590
11Marcel Marcel0X100.008640955895676457535650605261635850590
12Matthew Maggio (R)0X100.006038896169807159646057555862645650590
13Nathan Smith0X100.006638795970737157665856605566686050590
14Tyler Wotherspoon0X100.007339905882718456305953584671735450630
15Samuel Knazko0X100.006437915877817856305754604762646550610
16Donovan Sebrango0X100.006644695475627353305552564562646850580
Scratches
1Alex Laferriere (R)0X100.006952836578927563586062616563676650630
2Artem Anisimov0X100.007739955986757358635756606276783450620
3Ozzy Wiesblatt0X100.006040735969677758645755565862647850580
4Curtis Hall0X100.007439915683697055615453575664665850580
5Jayden Grubbe (R)0X100.007542755684697254605255575361636750580
6Antti Saarela (R)0X100.006037935669676453585455525763655850560
7Tanner Dickinson (R)0X100.006235935462676253595157505562646050550
8Ben Gleason0X100.006439825973718458306156574866684250610
9Brady Keeper0X100.007147625680657055305453574568703650600
TEAM AVERAGE100.00684383597675765755575658566567565060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Drew Commesso (R)100.00777873777675777675777662697450730
Scratches
1Mads Sogaard100.00788581957776787776787764717450760
2Nico Daws100.00778278877675777675777664716350750
3Ales Stezka100.00777571847675777675777667785150740
4Ivan Fedotov100.00757065987473757473757467815750740
5Keith Kinkaid100.00748075797372747372747377894350730
6Conor Murphy100.00737268887271737271737266755550710
7Mitchell Weeks100.00697369816867696867696863694550680
TEAM AVERAGE100.0075777386747375747375746675585073
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Chris Taylor67707671787273CAN522100,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1John HaydenCheckers (Flo)C/LW/RW46282856241072559811735010716.18%1165614.265491262000003060.09%85700001.7100410421
2Brett MurrayCheckers (Flo)LW46173350233407358142469611.97%1370915.4215616620004342052.00%10000011.4111000143
3Matthew MaggioCheckers (Flo)RW461631472320254113339514.16%767014.57145962000002059.26%5400001.4000000134
4Gage GoncalvesCheckers (Flo)C46192241132954451116236116.38%1150811.0600000000002157.93%16400001.6100100233
5Adam BeckmanCheckers (Flo)LW4616213715120264499256316.16%123948.5700000000001057.14%2800011.8800000311
6Tyler WotherspoonCheckers (Flo)D46152237-7151517667136329011.03%84102922.38114151021630001131100.00%000010.7200000113
7Artem AnisimovCheckers (Flo)C32517221412021335527319.09%62798.7300000000000061.97%28400001.5800000012
8Ben GleasonCheckers (Flo)D25616223260412943143113.95%3549519.836393089000084100.00%000000.8900000210
9Brady KeeperCheckers (Flo)D3321416859595322912196.90%4542913.00011715000014110.00%000000.7500001100
10Alex LaferriereCheckers (Flo)RW16861468036359225628.70%633020.6813419610000250178.26%2300010.8500000310
11Samuel KnazkoCheckers (Flo)D1615611403115246124.17%1632220.131121250000071000.00%000000.3700000001
12Tristen RobinsCheckers (Flo)C461342403161716.67%2571.25000212000051066.67%4500001.3900000001
13Nick CousinsFlorida PanthersC/LW603318061996160.00%214424.120111190001390054.92%19300000.4100000000
14Pat MaroonFlorida PanthersLW7202217518141622012.50%215722.450002240001430069.23%1300000.2500100000
15Marcel MarcelCheckers (Flo)LW461011200020150.00%2270.60000000000191060.00%1500000.7300000000
16Joel TeasdaleCheckers (Flo)C/LW46000-100124130.00%0170.390001400006000.00%200000.0000000000
Team Total or Average54913722135812848545632535105930371412.94%254622911.35262652213631000747615359.51%177800041.1511611181719
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Mads SogaardCheckers (Flo)158700.9172.2189822333970100.0000150204
2Nico DawsCheckers (Flo)42200.9232.5223800101300000.0000419000
Team Total or Average1910900.9182.27113622435270100.00001919204


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam BeckmanLW232001-05-10No182 Lbs6 ft2NoNoNo2RFAPro & Farm500,000$0$0$NoLink / NHL Link
Ales StezkaG281997-01-06No190 Lbs6 ft4NoNoNo2UFAPro & Farm500,000$0$0$NoLink / NHL Link
Alex LaferriereRW232001-10-28Yes205 Lbs6 ft1NoNoNo4RFAPro & Farm300,000$0$0$NoNHL Link
Antti SaarelaC232001-06-27Yes183 Lbs5 ft11NoNoNo4RFAPro & Farm300,000$0$0$NoNHL Link
Artem AnisimovC361988-05-24No199 Lbs6 ft4NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Ben GleasonD261998-03-25No180 Lbs6 ft1NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Brady KeeperD281996-06-05No197 Lbs6 ft2NoNoNo2UFAPro & Farm500,000$0$0$NoLink / NHL Link
Brett MurrayLW261998-07-20No228 Lbs6 ft5NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Conor MurphyG261998-09-01No201 Lbs6 ft4NoNoNo2RFAPro & Farm500,000$0$0$NoLink / NHL Link
Curtis HallC242000-04-26No197 Lbs6 ft3NoNoNo4RFAPro & Farm300,000$0$0$NoLink / NHL Link
Donovan SebrangoD232002-01-12No189 Lbs6 ft1NoNoNo2RFAPro & Farm500,000$0$0$NoLink / NHL Link
Drew CommessoG222002-07-19Yes180 Lbs6 ft2NoNoNo4ELCPro & Farm500,000$0$0$NoNHL Link
Gage GoncalvesC242001-01-16No188 Lbs5 ft11NoNoNo2RFAPro & Farm500,000$0$0$NoLink / NHL Link
Hugh McGingC/LW261998-07-11No176 Lbs5 ft8NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Ivan FedotovG281996-11-28No214 Lbs6 ft7NoNoNo2UFAPro & Farm900,000$0$0$NoLink / NHL Link
Jayden GrubbeC222003-01-12Yes201 Lbs6 ft3NoNoNo4ELCPro & Farm300,000$0$0$NoNHL Link
Joel TeasdaleC/LW251999-03-11No212 Lbs6 ft0NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
John HaydenC/LW/RW301995-02-14No223 Lbs6 ft3NoNoNo3UFAPro & Farm500,000$0$0$NoLink / NHL Link
Josh CurrieC321992-10-29No172 Lbs5 ft10NoNoNo3UFAPro & Farm500,000$0$0$NoLink / NHL Link
Keith KinkaidG351989-07-04No195 Lbs6 ft2NoNoNo1UFAPro & Farm750,000$0$0$NoLink / NHL Link
Mads SogaardG242000-12-13No196 Lbs6 ft7NoNoNo1RFAPro & Farm500,000$0$0$NoLink / NHL Link
Marcel MarcelLW212003-10-31No242 Lbs6 ft4NoNoNo4ELCPro & Farm300,000$0$0$NoLink / NHL Link
Matthew MaggioRW222002-11-25Yes185 Lbs5 ft11NoNoNo4ELCPro & Farm300,000$0$0$NoNHL Link
Michael MilneLW222002-09-21No185 Lbs5 ft11NoNoNo3ELCPro & Farm500,000$0$0$NoLink / NHL Link
Mitchell WeeksG232001-06-22No187 Lbs6 ft3NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Nathan SmithC261998-10-19No177 Lbs6 ft0NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Nico DawsG242000-12-22No205 Lbs6 ft4NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Ozzy WiesblattC222002-03-09No183 Lbs5 ft11NoNoNo3ELCPro & Farm500,000$0$0$NoLink / NHL Link
Samuel KnazkoD222002-08-07No198 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$0$0$NoLink / NHL Link
Spencer SmallmanRW281996-09-09No198 Lbs6 ft1NoNoNo3UFAPro & Farm300,000$0$0$NoLink / NHL Link
Tanner DickinsonC222002-03-05Yes150 Lbs5 ft11NoNoNo4ELCPro & Farm300,000$0$0$NoNHL Link
Tristen RobinsC232001-11-15No176 Lbs5 ft10NoNoNo3RFAPro & Farm500,000$0$0$NoLink / NHL Link
Tyler WotherspoonD311993-03-12No207 Lbs6 ft2NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3325.45194 Lbs6 ft22.48422,727$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Brett MurrayJohn HaydenMatthew Maggio30122
3Adam BeckmanGage Goncalves20122
4Gage Goncalves10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyler Wotherspoon40122
230122
320122
4Tyler Wotherspoon10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Brett MurrayJohn HaydenMatthew Maggio40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyler Wotherspoon60122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Brett Murray40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyler Wotherspoon60122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Tyler Wotherspoon60122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Brett Murray40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyler Wotherspoon60122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Tyler Wotherspoon
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Tyler Wotherspoon
Extra Forwards
Normal PowerPlayPenalty Kill
Tristen Robins, Joel Teasdale, Marcel MarcelTristen Robins, Joel TeasdaleMarcel Marcel
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , Brett Murray, , Adam Beckman
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4635L61592884471458151642961889122
All Games
GPWLOTWOTL SOWSOLGFGA
4615281110159183
Home Games
GPWLOTWOTL SOWSOLGFGA
24714111094102
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2281400006581
Last 10 Games
WLOTWOTL SOWSOL
280000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2153315.35%2395377.82%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
48347949357343413
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
639139745.74%643149642.98%35575646.96%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
10417461214315513243


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
9 - 2024-09-2410Checkers0Penguins1LBoxScore
10 - 2024-09-2523Checkers4Islanders2WBoxScore
15 - 2024-09-3033Monsters4Checkers5WXBoxScore
16 - 2024-10-0146Monsters3Checkers5WBoxScore
22 - 2024-10-0771Islanders3Checkers2LBoxScore
23 - 2024-10-0884Islanders3Checkers2LBoxScore
30 - 2024-10-15123Checkers2Bears1WBoxScore
31 - 2024-10-16136Checkers7Bears0WBoxScore
37 - 2024-10-22156Marlies0Checkers6WBoxScore
38 - 2024-10-23173Marlies2Checkers8WBoxScore
43 - 2024-10-28190Checkers2Wolfpack6LBoxScore
44 - 2024-10-29210Checkers2Thunderbirds4LBoxScore
47 - 2024-11-01220Checkers0Wolfpack1LBoxScore
50 - 2024-11-04234Checkers2Thunderbirds1WBoxScore
51 - 2024-11-05246Checkers1Islanders2LBoxScore
57 - 2024-11-11267Wild2Checkers5WBoxScore
58 - 2024-11-12279Wild1Checkers9WBoxScore
64 - 2024-11-18309Americans4Checkers3LBoxScore
65 - 2024-11-19320Americans3Checkers2LBoxScore
69 - 2024-11-23347Checkers1Penguins3LBoxScore
71 - 2024-11-25356Checkers1Penguins3LBoxScore
72 - 2024-11-26364Checkers6Bears3WBoxScore
75 - 2024-11-29383Thunderbirds5Checkers3LBoxScore
76 - 2024-11-30387Thunderbirds8Checkers4LBoxScore
79 - 2024-12-03410Islanders7Checkers2LBoxScore
80 - 2024-12-04425Islanders4Checkers2LBoxScore
86 - 2024-12-10446Checkers1Phantoms6LBoxScore
87 - 2024-12-11452Checkers6Bears4WBoxScore
89 - 2024-12-13463Checkers1Phantoms3LBoxScore
92 - 2024-12-16474Checkers1Penguins7LBoxScore
99 - 2024-12-23509Bears7Checkers6LXBoxScore
100 - 2024-12-24523Bears4Checkers7WBoxScore
103 - 2024-12-27542Admirals4Checkers8WBoxScore
104 - 2024-12-28547Admirals3Checkers4WXXBoxScore
107 - 2024-12-31565Wolfpack8Checkers3LBoxScore
108 - 2025-01-01581Wolfpack6Checkers1LBoxScore
111 - 2025-01-04597Checkers8Wild5WBoxScore
113 - 2025-01-06608Checkers2Admirals7LBoxScore
114 - 2025-01-07618Checkers5Admirals6LBoxScore
117 - 2025-01-10634Checkers9Wild5WBoxScore
120 - 2025-01-13647Penguins6Checkers1LBoxScore
121 - 2025-01-14663Penguins4Checkers3LBoxScore
127 - 2025-01-20676Checkers1Wolfpack6LBoxScore
128 - 2025-01-21694Checkers3Islanders5LBoxScore
135 - 2025-01-28729Wolfpack4Checkers3LBoxScore
136 - 2025-01-29747Wolfpack7Checkers0LBoxScore
142 - 2025-02-04778Bears-Checkers-
143 - 2025-02-05793Bears-Checkers-
148 - 2025-02-10816Checkers-Monsters-
149 - 2025-02-11829Checkers-Monsters-
152 - 2025-02-14846Thunderbirds-Checkers-
153 - 2025-02-15851Thunderbirds-Checkers-
156 - 2025-02-18871Phantoms-Checkers-
Trade Deadline --- Trades can’t be done after this day is simulated!
157 - 2025-02-19883Phantoms-Checkers-
160 - 2025-02-22897Checkers-Americans-
163 - 2025-02-25912Checkers-Marlies-
164 - 2025-02-26927Checkers-Marlies-
167 - 2025-03-01937Checkers-Comets-
169 - 2025-03-03952Checkers-Americans-
170 - 2025-03-04964Checkers-Comets-
173 - 2025-03-07979Bruins-Checkers-
174 - 2025-03-08983Bruins-Checkers-
177 - 2025-03-111002Penguins-Checkers-
178 - 2025-03-121017Penguins-Checkers-
183 - 2025-03-171044Checkers-Bruins-
184 - 2025-03-181052Checkers-Islanders-
185 - 2025-03-191065Checkers-Bruins-
191 - 2025-03-251092Comets-Checkers-
192 - 2025-03-261106Comets-Checkers-
195 - 2025-03-291112Checkers-Wolfpack-
197 - 2025-03-311129Checkers-Thunderbirds-
198 - 2025-04-011145Checkers-Thunderbirds-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance45,41622,592
Attendance PCT94.62%94.13%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
12 2834 - 94.46% 70,710$1,697,028$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
163,500$ 139,500$ 0$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 95,151$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
848,514$ 63 1,204$ 75,852$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
1282274704103229277-4841102703001103146-4341172001102126131-56622942165027089874923120738806751289682493816754516514.41%3875785.27%3985231742.51%1140272441.85%493120340.98%166911522348600926425
1376145404301187334-1473892302301107157-50385310200080177-97401873195061107171412135068570972926567697501372401399.73%3238773.07%1884219840.22%856229837.25%457115339.64%14089702331569840357
137617002300127409-282380350030067214-147381350200060195-13591272453721004744341736057557558231959386031263345267.54%2396572.80%2565181231.18%751251829.83%369118931.03%10496782684584834315
147632260842419316429381813032029277153814130522210187149219333252519064685120270687681633189962269011633444813.95%2663786.09%21114231848.06%1089230247.31%528104750.43%182513091898541897440
14762730100080462-382381370000042228-186381360100038234-19668015623610029262414970490522481358810156991223226114.87%2907773.45%1392164323.86%590274621.49%275116923.52%9235832850558789281
1582254006443204246-424115150522211710984110250122187137-507720434554906071645922010716725731269179791014873866917.88%3835286.42%31164241048.30%1226279543.86%551115347.79%182512922230579927433
1582373005352236188484121130204112991384116170331110797109923642065611301026064210406916956882132603105015114186816.27%4485787.28%61316244253.89%1247253549.19%590116250.77%207114721926567968493
16824623022452301379341191601104876918412770114114368751112304076370180957455208306936736911646513142517044127417.96%6106589.34%61646257064.05%1465242560.41%658106761.67%232816801670563975519
16824622032542691421274125120100313264684121100225113778591142694627311160111816924770855792797185450295213794278118.97%3914787.98%61609256862.66%1344227159.18%700111562.78%233017481716535929490
1772105701112144362-218366290000175180-105364280111169182-113271442744181007832321926068061861034619756641245248176.85%2736177.66%2612180633.89%752256029.38%340108731.28%11287752462513747296
17725413012202981141843627601020157551023627700200141598211629854684401501251016925450855837844137441875312443859524.68%3152990.79%31661252165.89%1077176960.88%674103565.12%219016601333438815449
187246700100125454-329363320010064232-168361350000061222-16191252463710004739391637050156856835079846291183304299.54%2577371.60%1505168130.04%638255524.97%292115825.22%9816352587529751280
1946152801110159183-24247140111094102-822814000006581-16351592884472273434131458483479493515164296188912153315.35%2395377.82%0639139745.74%643149642.98%35575646.96%10417461214315513243
Total Regular Season97631355003827242424813472-9914891612720191391512661724-4584871522780191415912151748-533801248144616942118773972788589261384838645869481103241593891068117340456265514.36%442176082.81%36130922768347.29%128183099441.36%62821429443.95%2077414707272556896109155026
Playoff
1540400000619-1320200000210-82020000049-50612180003036802920191203163952214.55%26773.08%0399939.39%3412527.20%186428.13%8658105294722
166240000079-2312000005503120000024-2471421110214870262734131471201282428.33%55394.55%08115352.94%9419149.21%387848.72%13488149467635
161911800000373701055000001819-1963000001918122376810504019784840134133159402114249348142117.75%1031486.41%032866849.10%26157445.47%14326653.76%521358485157264138
171275000004928217520000030121852300000191631449841330101113234930131147176258781322041002020.00%591476.27%031252159.88%19833758.75%12519962.81%3652712708714477
Total Playoff4120210000099936221111000005546919910000004447-34099178277160352138113203203273889112705647752883411.81%2433884.36%0760144152.74%587122747.84%32460753.38%11087771011320532273