Roadrunners

GP: 72 | W: 11 | L: 58 | OTL: 3 | P: 25
GF: 134 | GA: 388 | PP%: 5.79% | PK%: 74.58%
GM : Richard Boivin | Morale : 50 | Team Overall : 64

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Buddy RobinsonX100.008776826199768560596158635971733450640
2Matt MartinX100.009085746187789062586163575683733250640
3Pontus AbergXX100.006438896673856462686755586469716250620
4Will BittenXX100.005737886066909259626058555964666550610
5Jamie DevaneX100.008776575196686652575354595271735150590
6Shawn Ouellette-St. AmantX100.006439825873816057615956585766684250590
7Ben HolmstromX100.006936765678696154635750555275772350580
8Rich CluneX100.007384595372638652585354525375803450570
9Robert CarpenterXX100.006337945572676353595352555466684550560
10Thomas HickeyX100.007337926371837261306657685075765350660
11Robbie RussoX100.006437875973699358306453574669715350620
12Jesper Sellgren (R)X100.005736815666708355305854564564665850590
Scratches
1Brad MaloneXX100.008242866184838062756364656274783750650
2Gregory HofmannXXX100.006235807173787266686557596269714950630
TEAM AVERAGE100.00715081597776765856605658557172465061
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Cayden Primeau100.00758386847473757473757463695950730
2Zane McIntyre100.00747677827372747372747370843950730
3David Hrenak (R)100.00756566797473757473757464715450710
Scratches
1Dylan Ferguson100.00736768757271737271737264714850700
2Arvid Holm (R)100.00677273896665676665676664714850680
3Mat Robson100.00666768816564666564666566754250660
TEAM AVERAGE100.0072727382717072717072716574485070
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Adam Nightingale65595966605685USA4271,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jarred TinordiPhoenix CoyotesD9313161032102063511118.57%821423.811561843000023100.00%000001.4900101002
2Matt MartinRoadrunners (PHX)LW33617721554224083215.00%12778.41000060000203060.00%3500000.5000100120
Team Total or Average4291423175315742875194312.00%949111.7115618500000434060.00%3500000.9400201122
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Zane McIntyreRoadrunners (PHX)71510.9103.8740300262880000.000070110
Team Total or Average71510.9103.8740300262880000.000070110


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Arvid HolmG241998-11-03Yes213 Lbs6 ft4NoNoNo4RFAPro & Farm300,000$0$0$No
Ben HolmstromC351987-04-09No203 Lbs6 ft1NoNoNo1UFAPro & Farm300,000$0$0$NoLink
Brad MaloneC/LW331989-05-20No217 Lbs6 ft2NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Buddy RobinsonRW311991-09-30No232 Lbs6 ft6NoNoNo2UFAPro & Farm499,523$0$0$NoLink / NHL Link
Cayden PrimeauG231999-08-11No203 Lbs6 ft3NoNoNo2RFAPro & Farm500,000$0$0$NoLink / NHL Link
David HrenakG241998-05-05Yes192 Lbs6 ft2NoNoNo4RFAPro & Farm300,000$0$0$No
Dylan FergusonG241998-09-20No189 Lbs6 ft1NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Gregory HofmannC/LW/RW301992-11-13No194 Lbs6 ft0NoNoNo1UFAPro & Farm300,000$0$0$NoLink
Jamie DevaneLW321991-02-20No232 Lbs6 ft5NoNoNo4UFAPro & Farm300,000$0$0$NoLink / NHL Link
Jesper SellgrenD241998-06-11Yes169 Lbs5 ft11NoNoNo4RFAPro & Farm300,000$0$0$No
Mat RobsonG261996-03-26No190 Lbs6 ft3NoNoNo2RFAPro & Farm900,000$0$0$NoLink / NHL Link
Matt MartinLW331989-05-08No220 Lbs6 ft3NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Pontus AbergLW/RW291993-09-23No194 Lbs6 ft0NoNoNo3UFAPro & Farm1,000,000$0$0$NoLink / NHL Link
Rich CluneLW351987-04-25No207 Lbs5 ft10NoNoNo2UFAPro & Farm300,000$0$0$NoLink / NHL Link
Robbie RussoD301993-02-15No191 Lbs6 ft0NoNoNo4UFAPro & Farm300,000$0$0$NoLink / NHL Link
Robert CarpenterC/LW261996-08-16No200 Lbs5 ft11NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Shawn Ouellette-St. AmantLW261996-11-18No191 Lbs6 ft0NoNoNo1RFAPro & Farm300,000$0$0$NoLink
Thomas HickeyD341989-02-08No185 Lbs6 ft0NoNoNo1UFAPro & Farm1,000,000$0$0$NoLink / NHL Link
Will BittenC/RW241998-07-10No167 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$0$0$NoLink / NHL Link
Zane McIntyreG301992-08-20No206 Lbs6 ft2NoNoNo2UFAPro & Farm500,000$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2028.65200 Lbs6 ft12.20459,976$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
230122
320122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
230122
320122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , , ,
Goalie
#1 : , #2 :
Custom OT Lines Forwards
, , , , , , , , , ,
Custom OT Lines Defensemen
, , , ,


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
7225L2134259393174836321028650123700
All Games
GPWLOTWOTL SOWSOLGFGA
727583310134388
Home Games
GPWLOTWOTL SOWSOLGFGA
36330210069189
Visitor Games
GPWLOTWOTL SOWSOLGFGA
36428121065199
Last 10 Games
WLOTWOTL SOWSOL
190000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
242145.79%2997674.58%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
607542586165435414
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
493160130.79%794267629.67%323112328.76%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
9996522584518749287


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2022-09-297Roadrunners3Wolf Pack8LBoxScore
3 - 2022-09-3022Checkers4Roadrunners0LBoxScore
6 - 2022-10-0340Barracuda5Roadrunners0LBoxScore
9 - 2022-10-0661Roadrunners2Checkers8LBoxScore
11 - 2022-10-0878Checkers2Roadrunners1LBoxScore
14 - 2022-10-1196Roadrunners1Wolf Pack2LXBoxScore
16 - 2022-10-13108IceHogs1Roadrunners4WBoxScore
18 - 2022-10-15129Roadrunners1Eagles7LBoxScore
19 - 2022-10-16135Roadrunners3Monsters6LBoxScore
21 - 2022-10-18153Bears6Roadrunners5LBoxScore
24 - 2022-10-21173Admirals5Roadrunners3LBoxScore
27 - 2022-10-24193Roadrunners5Marlies6LBoxScore
28 - 2022-10-25206Rocket8Roadrunners1LBoxScore
31 - 2022-10-28229Wolf Pack8Roadrunners0LBoxScore
34 - 2022-10-31248Roadrunners1Moose8LBoxScore
36 - 2022-11-02261Comets6Roadrunners0LBoxScore
38 - 2022-11-04275Roadrunners3Rampage4LXBoxScore
40 - 2022-11-06289Marlies3Roadrunners4WBoxScore
43 - 2022-11-09308Roadrunners2Penguins10LBoxScore
45 - 2022-11-11326Roadrunners2Bears7LBoxScore
46 - 2022-11-12335Bruins4Roadrunners1LBoxScore
49 - 2022-11-15358Phantoms7Roadrunners2LBoxScore
51 - 2022-11-17373Roadrunners0Griffins5LBoxScore
53 - 2022-11-19381Roadrunners3Monsters5LBoxScore
55 - 2022-11-21396Roadrunners0Senators4LBoxScore
56 - 2022-11-22409Stars6Roadrunners0LBoxScore
59 - 2022-11-25426Americans3Roadrunners1LBoxScore
63 - 2022-11-29453Griffins5Roadrunners0LBoxScore
65 - 2022-12-01470Roadrunners4Reign5LBoxScore
67 - 2022-12-03484Roadrunners0Stars4LBoxScore
69 - 2022-12-05495Crunch7Roadrunners1LBoxScore
71 - 2022-12-07515Checkers6Roadrunners3LBoxScore
73 - 2022-12-09529Roadrunners0Comets2LBoxScore
75 - 2022-12-11548Thunderbirds5Roadrunners4LXBoxScore
77 - 2022-12-13559Roadrunners4Gulls3WXBoxScore
79 - 2022-12-15571Roadrunners0Rocket5LBoxScore
81 - 2022-12-17587Roadrunners0Phantoms4LBoxScore
82 - 2022-12-18597Wolves8Roadrunners0LBoxScore
85 - 2022-12-21621Reign8Roadrunners4LBoxScore
87 - 2022-12-23639Roadrunners5Marlies4WXXBoxScore
89 - 2022-12-25649Roadrunners2Thunderbirds4LBoxScore
91 - 2022-12-27662Roadrunners4Condors3WBoxScore
92 - 2022-12-28670Sound Tigers6Roadrunners2LBoxScore
94 - 2022-12-30691Wild4Roadrunners2LBoxScore
97 - 2023-01-02713IceHogs4Roadrunners5WXBoxScore
99 - 2023-01-04730Roadrunners3Admirals1WBoxScore
101 - 2023-01-06744Roadrunners2Crunch6LBoxScore
103 - 2023-01-08757Firebirds3Roadrunners4WBoxScore
106 - 2023-01-11778Bears5Roadrunners2LBoxScore
108 - 2023-01-13792Roadrunners0Devils8LBoxScore
110 - 2023-01-15811Monsters8Roadrunners1LBoxScore
112 - 2023-01-17818Roadrunners0Bruins7LBoxScore
114 - 2023-01-19835Roadrunners2Wranglers8LBoxScore
116 - 2023-01-21850Rampage7Roadrunners1LBoxScore
118 - 2023-01-23866Roadrunners0Wolves7LBoxScore
120 - 2023-01-25877Roadrunners0Wild9LBoxScore
121 - 2023-01-26888Gulls4Roadrunners5WXBoxScore
124 - 2023-01-29909Barracuda4Roadrunners2LBoxScore
127 - 2023-02-01930Roadrunners4Firebirds3WBoxScore
129 - 2023-02-03945Wranglers8Roadrunners2LBoxScore
132 - 2023-02-06968Senators4Roadrunners2LBoxScore
135 - 2023-02-09989Roadrunners0Wolf Pack8LBoxScore
136 - 2023-02-101003Roadrunners0Checkers4LBoxScore
138 - 2023-02-121012Devils4Roadrunners1LBoxScore
141 - 2023-02-151038Moose5Roadrunners1LBoxScore
143 - 2023-02-171052Roadrunners0Americans6LBoxScore
146 - 2023-02-201068Condors5Roadrunners3LBoxScore
148 - 2023-02-221081Roadrunners2Sound Tigers6LBoxScore
151 - 2023-02-251102Penguins8Roadrunners1LBoxScore
152 - 2023-02-261113Roadrunners6IceHogs5WBoxScore
156 - 2023-03-021131Eagles3Roadrunners1LBoxScore
158 - 2023-03-041141Roadrunners1Barracuda7LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance68,18833,573
Attendance PCT94.71%93.26%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2827 - 94.22% 70,649$2,543,352$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,105,950$ 91,995$ 0$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 105,929$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 6,783$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
128235290364529425737411812014241731314241171702221121126-5952944767700701159577244407977968242036600103316075048917.66%4178380.10%61298251551.61%1146221551.74%691128253.90%221916431823555937481
1368233701421174216-423413160031190114-243410210111084102-185717429947314061565416650528530591187354886312534115413.14%3396082.30%31093194856.11%1063197353.88%55998856.58%160311321711493794386
146838160243523916772341712012111108129342140122412986439523942966805094845622880797709755163042979512803066320.59%2744384.31%41365220162.02%1063178159.69%622101561.28%199614951350421783428
158234290551823519540411913021151189424411516034031171011693235407642150806881211306416687772125653110816494278519.91%4586286.46%21130241046.89%1075255842.03%540113847.45%208014841948573955484
1682195604102223364-1414192803100112179-6741102801002111185-7449223394617100828453229807558327003009912101316553764812.77%43411673.27%3952231541.12%1107272440.64%526126341.65%163911492395581906409
177275803310134388-254363300210069189-120364280121065199-13425134259393005435414174860754258616363210286501237242145.79%2997674.58%0493160130.79%794267629.67%323112328.76%9996522584518749287
Total Regular Season45415622501823112112991587-288227791110912511672788-116227771140911610627799-172414129922643563321544674283251255660740604121366314305417054628681226635315.58%222144080.19%1863311299048.74%62481392744.86%3261680947.89%10538755711813314251272478
Playoff
11734000001318-53210000065141300000713-6613223501043615604163521865594129621117.74%39294.87%09521344.60%8421738.71%378941.57%147102195517736
141275000002727051400000819-11761000001981114274572030978270082848029777176216671116.42%771087.01%018940047.25%20740051.75%8617648.86%29319431710116479
Total Playoff19109000004045-5835000001424-101174000002621520406710704013101442601231471324831322703451292217.05%1161289.66%028461346.33%29161747.16%12326546.42%440297512152242115