Barracuda

GP: 72 | W: 48 | L: 18 | OTL: 6 | P: 102
GF: 268 | GA: 151 | PP%: 23.34% | PK%: 85.03%
GM : Alexandre Roberge | Morale : 50 | Team Overall : 63

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Gabriel DumontX100.006253746269808361736566616372773550640
2Nicolas Aube-KubelX100.008343766571798365576463566567687150630
3Jonas RondbjergX100.006738886580788164566362616664656750630
4Mason ShawX100.007039666368878559746258576365666150620
5Graham KnottX100.007439905883738957605658595765676850610
6Serron Noel (R)X100.008445675793719258565754595562647750610
7Scott WilsonX100.005937895869878557615659585670723950600
8Shane BowersX100.006938905978847058535459565763658050590
9Ostap SafinXX100.008140835790716555525455585663655950590
10Pavel GogolevXX100.006337926072716258625960565962645250590
11Jaycob MegnaX100.008474786096858859306658734570753950700
12Will BorgenX100.008843786584867563306658715065665950680
13Jakub ZborilX100.007735876976857368307455675364658250670
14Dylan SambergX100.008371796281807659306656624963657450650
15Alexander AlexeyevX100.007670746389758162306157595163657850640
16Ryan MurphyX100.006139796569768364306357584969716950630
17Doyle SomerbyX100.008872765597658154305652614568704950630
18Alex GreenX100.006339895782679055305954584764665750610
19Michael Karow (R)X100.007138845780666156306054584764665750600
Scratches
1Cole Fonstad (R)X100.006335925663817357615859535662645850580
2Collin Adams (R)X100.006236935469677355525657535564665850570
3Lynden McCallumX100.006638845773686255585653545762645150570
4Matej PekarX100.006553625174737652565354555162646350560
TEAM AVERAGE100.00724681607976785948605759546567615062
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Michael Dipietro100.00747573767372747372747363696650710
2Adam Scheel100.00707374826968706968706963695350690
Scratches
1Trent Miner100.00696766746867696867696861654950660
TEAM AVERAGE100.0071727177706971706971706268565069
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Martin St. Louis84767977716678CAN4771,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Gabriel DumontBarracuda (San)C7236498534215281412125416716.98%6115616.06152136622480000129264.01%124200011.4700001448
2Jakub ZborilBarracuda (San)D6118617930921015075130437513.85%86138222.67152338942320333293520.00%000001.1400011664
3Parker KellySan Jose SharksLW/RW7231397024108102041102737717911.36%28158522.0111162766278224163962060.71%11200000.8801101771
4Nicolas Aube-KubelBarracuda (San)RW7232316330880148601755912318.29%11132418.391111223924920241742259.22%10300030.9500000368
5Kieffer BellowsSan Jose SharksLW/RW72262854291040162581655913215.76%8125717.46811194527020281073158.60%18600000.8601000436
6Will BorgenBarracuda (San)D72945542713351767192321039.78%81170923.7551621612660224323300.00%000000.6300000242
7Jonas RondbjergBarracuda (San)RW722924534018045701794312716.20%10101114.05461011890003752150.94%10600021.0500000422
8Jaycob MegnaBarracuda (San)D72113647281153514368103316210.68%82170123.6481018622570112349410.00%000000.5500412134
9Graham KnottBarracuda (San)LW7212304237360394812942809.30%1107414.9211112271710000314067.86%5600000.7800000342
10Mason ShawBarracuda (San)C72142539435209089127369811.02%381911.3800000000002067.89%76300000.9500000121
11Dylan SambergBarracuda (San)D726293538100101345345143513.33%46116216.1535814750330195110.00%000000.6000200231
12Alexander AlexeyevBarracuda (San)D726232934735922247173812.77%35103114.33044955000275110.00%000000.5600001214
13Scott WilsonBarracuda (San)LW7210122229120132174253513.51%76609.1800000000003266.67%3300000.6700000302
14Serron NoelBarracuda (San)RW7297161854082339528659.47%85117.1000005000003075.00%4000010.6300000201
15Doyle SomerbyBarracuda (San)D1111011920034852520.00%716314.860001200000100.00%000001.3500000110
16Pavel GogolevBarracuda (San)LW/RW72325-1405102181614.29%11812.530001220000141170.00%1000000.5500000000
17Ryan MurphyBarracuda (San)D1414566051284212.50%1020614.7300026000029000.00%000000.4900000001
18Cole FonstadBarracuda (San)LW3412320007103100.00%1932.74000001121780057.69%5200000.6400000000
19Shane BowersBarracuda (San)RW72112-12099611516.67%21231.72000214000000055.56%8100000.3200000000
20Ostap SafinBarracuda (San)LW/RW340112205710330.00%2852.5300001000040042.86%700000.2300000000
21Adam BoqvistSan Jose SharksD1000000000000.00%22121.830000200007000.00%000000.0000000000
Team Total or Average123525645971545810408015649721897578136313.49%4371726413.9881134215496225071219432172461463.78%279100070.8302726454647
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Michael DipietroBarracuda (San)58411160.9201.8934854811013680100.6673580441
2Adam ScheelBarracuda (San)157700.9042.5779301343540100.00001472100
Team Total or Average73481860.9162.0242794914417220200.66737272541


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam ScheelG231999-05-01No192 Lbs6 ft3NoNoNo1RFAPro & Farm300,000$0$0$NoLink
Alex GreenD241998-06-18No194 Lbs6 ft3NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Alexander AlexeyevD231999-11-15No213 Lbs6 ft4NoNoNo2RFAPro & Farm900,000$0$0$NoLink / NHL Link
Cole FonstadLW222000-04-24Yes165 Lbs5 ft10NoNoNo4ELCPro & Farm300,000$0$0$No
Collin AdamsLW241998-04-24Yes200 Lbs5 ft9NoNoNo4RFAPro & Farm300,000$0$0$No
Doyle SomerbyD281994-07-04No221 Lbs6 ft6NoNoNo2UFAPro & Farm500,000$0$0$NoLink / NHL Link
Dylan SambergD241999-01-24No190 Lbs6 ft3NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Gabriel DumontC321990-10-06No195 Lbs5 ft10NoNoNo3UFAPro & Farm400,000$0$0$NoLink / NHL Link
Graham KnottLW261997-01-13No199 Lbs6 ft3NoNoNo4RFAPro & Farm300,000$0$0$NoLink / NHL Link
Jakub ZborilD261997-02-21No191 Lbs6 ft1NoNoNo1RFAPro & Farm1,000,000$0$0$NoLink / NHL Link
Jaycob MegnaD301992-12-10No220 Lbs6 ft6NoNoNo3UFAPro & Farm500,000$0$0$NoLink / NHL Link
Jonas RondbjergRW231999-03-31No197 Lbs6 ft2NoNoNo3RFAPro & Farm300,000$0$0$NoLink
Lynden McCallumRW232000-01-26No184 Lbs6 ft1NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Mason ShawC241998-11-03No184 Lbs5 ft10NoNoNo1RFAPro & Farm500,000$0$0$NoLink / NHL Link
Matej PekarLW232000-02-10No185 Lbs6 ft1NoNoNo3RFAPro & Farm300,000$0$0$NoLink
Michael DipietroG231999-06-09No200 Lbs6 ft0NoNoNo1RFAPro & Farm500,000$0$0$NoLink / NHL Link
Michael KarowD241998-12-18Yes200 Lbs6 ft2NoNoNo4RFAPro & Farm300,000$0$0$No
Nicolas Aube-KubelRW261996-05-10No187 Lbs5 ft11NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Ostap SafinLW/RW241999-02-11No204 Lbs6 ft5NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Pavel GogolevLW/RW232000-02-19No173 Lbs6 ft1NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Ryan MurphyD291993-03-31No181 Lbs5 ft11NoNoNo2UFAPro & Farm400,000$0$0$NoLink
Scott WilsonLW301992-04-24No177 Lbs5 ft11NoNoNo2UFAPro & Farm500,000$0$0$NoLink / NHL Link
Serron NoelRW222000-08-08Yes216 Lbs6 ft5NoNoNo4ELCPro & Farm500,000$0$0$NoLink / NHL Link
Shane BowersRW231999-07-30No186 Lbs6 ft2NoNoNo2RFAPro & Farm500,000$0$0$NoLink / NHL Link
Trent MinerG222001-02-05No185 Lbs6 ft1NoNoNo3ELCPro & Farm300,000$0$0$NoLink
Will BorgenD261996-12-19No205 Lbs6 ft3NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2624.88194 Lbs6 ft22.46434,615$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nicolas Aube-Kubel40122
2Gabriel DumontJonas Rondbjerg30122
3Graham KnottMason ShawSerron Noel20122
4Scott WilsonShane BowersPavel Gogolev10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jaycob MegnaWill Borgen40122
2Jakub ZborilDylan Samberg30122
3Alexander AlexeyevRyan Murphy20122
4Jaycob MegnaWill Borgen10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jonas Rondbjerg60122
2Gabriel DumontNicolas Aube-Kubel40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Jaycob MegnaWill Borgen60122
2Jakub ZborilDylan Samberg40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Jonas RondbjergNicolas Aube-Kubel40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Jaycob MegnaWill Borgen60122
2Jakub ZborilDylan Samberg40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Jaycob MegnaWill Borgen60122
240122Jakub ZborilDylan Samberg40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Jonas RondbjergNicolas Aube-Kubel40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jaycob MegnaWill Borgen60122
2Jakub ZborilDylan Samberg40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jonas RondbjergJaycob MegnaWill Borgen
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Jonas RondbjergJaycob MegnaWill Borgen
Extra Forwards
Normal PowerPlayPenalty Kill
Pavel Gogolev, Serron Noel, Graham KnottPavel Gogolev, Serron NoelGraham Knott
Extra Defensemen
Normal PowerPlayPenalty Kill
Alexander Alexeyev, Ryan Murphy, Jakub ZborilAlexander AlexeyevRyan Murphy, Jakub Zboril
Penalty Shots
, , Jonas Rondbjerg, Nicolas Aube-Kubel, Gabriel Dumont
Goalie
#1 : Michael Dipietro, #2 : Adam Scheel
Custom OT Lines Forwards
, , Jonas Rondbjerg, Nicolas Aube-Kubel, Gabriel Dumont, , , Serron Noel, Graham Knott, Mason Shaw, Scott Wilson
Custom OT Lines Defensemen
Jaycob Megna, Will Borgen, Jakub Zboril, Dylan Samberg, Alexander Alexeyev


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
72102W5268488756204517724661065157809
All Games
GPWLOTWOTL SOWSOLGFGA
7245183501268151
Home Games
GPWLOTWOTL SOWSOLGFGA
36239130012972
Visitor Games
GPWLOTWOTL SOWSOLGFGA
36229220113979
Last 10 Games
WLOTWOTL SOWSOL
621100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3478123.34%4616985.03%9
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
606707721148799793
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1294219458.98%1150216753.07%606102259.30%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
204115061492463813434


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2022-09-284Barracuda5Gulls1WBoxScore
3 - 2022-09-3020Marlies1Barracuda3WBoxScore
6 - 2022-10-0340Barracuda5Roadrunners0WBoxScore
8 - 2022-10-0551Comets0Barracuda3WBoxScore
10 - 2022-10-0768Barracuda2Penguins0WBoxScore
12 - 2022-10-0986Firebirds2Barracuda7WBoxScore
15 - 2022-10-12105Reign0Barracuda6WBoxScore
17 - 2022-10-14121Barracuda7Admirals1WBoxScore
19 - 2022-10-16134Wranglers1Barracuda6WBoxScore
20 - 2022-10-17141Barracuda6Reign2WBoxScore
23 - 2022-10-20167Comets2Barracuda0LBoxScore
25 - 2022-10-22181Barracuda3Monsters2WXBoxScore
27 - 2022-10-24197Barracuda5Thunderbirds1WBoxScore
29 - 2022-10-26213Penguins3Barracuda2LXBoxScore
31 - 2022-10-28224Barracuda1Rocket2LBoxScore
33 - 2022-10-30239Barracuda0Americans4LBoxScore
35 - 2022-11-01252Gulls3Barracuda6WBoxScore
37 - 2022-11-03269Barracuda3Sound Tigers2WXBoxScore
39 - 2022-11-05283Wild2Barracuda4WBoxScore
42 - 2022-11-08302Barracuda2Bruins1WBoxScore
44 - 2022-11-10314Barracuda8IceHogs2WBoxScore
45 - 2022-11-11322Sound Tigers2Barracuda5WBoxScore
47 - 2022-11-13345Stars0Barracuda2WBoxScore
50 - 2022-11-16362Barracuda1Wolf Pack2LBoxScore
52 - 2022-11-18376Wolf Pack2Barracuda1LXBoxScore
54 - 2022-11-20393Barracuda0Wranglers3LBoxScore
56 - 2022-11-22408Barracuda8Gulls2WBoxScore
57 - 2022-11-23415Wranglers1Barracuda3WBoxScore
60 - 2022-11-26436Barracuda3Wild4LXBoxScore
62 - 2022-11-28447Bruins2Barracuda1LBoxScore
64 - 2022-11-30461Barracuda2Comets1WBoxScore
66 - 2022-12-02479Firebirds2Barracuda6WBoxScore
69 - 2022-12-05499Barracuda2Checkers3LXXBoxScore
70 - 2022-12-06511Devils2Barracuda4WBoxScore
73 - 2022-12-09534Barracuda7Reign3WBoxScore
75 - 2022-12-11542Phantoms2Barracuda1LBoxScore
79 - 2022-12-15572Thunderbirds0Barracuda7WBoxScore
81 - 2022-12-17588Barracuda5Condors2WBoxScore
83 - 2022-12-19601Barracuda4Stars1WBoxScore
84 - 2022-12-20610Crunch2Barracuda4WBoxScore
87 - 2022-12-23637Bears1Barracuda5WBoxScore
90 - 2022-12-26655Eagles4Barracuda3LXBoxScore
92 - 2022-12-28674Barracuda5Wolves2WBoxScore
93 - 2022-12-29684Barracuda4Griffins3WBoxScore
95 - 2022-12-31699IceHogs2Barracuda6WBoxScore
98 - 2023-01-03721Barracuda7Marlies1WBoxScore
100 - 2023-01-05732Marlies3Barracuda5WBoxScore
102 - 2023-01-07751Checkers4Barracuda1LBoxScore
104 - 2023-01-09764Barracuda2Devils3LBoxScore
106 - 2023-01-11780Barracuda4Crunch1WBoxScore
108 - 2023-01-13790Barracuda0Penguins3LBoxScore
109 - 2023-01-14799Wolves7Barracuda1LBoxScore
113 - 2023-01-18825Griffins0Barracuda2WBoxScore
115 - 2023-01-20841Barracuda2Admirals3LBoxScore
117 - 2023-01-22856Admirals3Barracuda2LBoxScore
120 - 2023-01-25881Rampage7Barracuda1LBoxScore
122 - 2023-01-27897Barracuda9Firebirds1WBoxScore
124 - 2023-01-29909Barracuda4Roadrunners2WBoxScore
125 - 2023-01-30921Condors0Barracuda8WBoxScore
129 - 2023-02-03943Barracuda5Senators3WBoxScore
130 - 2023-02-04956Monsters2Barracuda0LBoxScore
133 - 2023-02-07973Americans3Barracuda2LBoxScore
135 - 2023-02-09991Barracuda2Rampage3LXBoxScore
136 - 2023-02-101002Barracuda3Phantoms5LBoxScore
138 - 2023-02-121016Reign0Barracuda6WBoxScore
142 - 2023-02-161040Rocket1Barracuda2WXBoxScore
145 - 2023-02-191063Barracuda3Moose5LBoxScore
146 - 2023-02-201071Barracuda5Bears3WBoxScore
149 - 2023-02-231086Moose3Barracuda4WBoxScore
150 - 2023-02-241094Barracuda5Eagles2WBoxScore
153 - 2023-02-271120Senators2Barracuda3WBoxScore
158 - 2023-03-041141Roadrunners1Barracuda7WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance68,66134,212
Attendance PCT95.36%95.03%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2858 - 95.25% 71,288$2,566,358$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,134,417$ 113,000$ 0$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 134,446$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 6,913$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
1282462402550234149854124110132011970494122130123011579361112344176510100838460209207086836861780550148618434907515.31%6006788.83%81391249255.82%1342249953.70%625115354.21%222915811752585981516
13685012001412611301313426700100118685034245000411436281110261463724210090887919770610658702132043292312954549019.82%3604088.89%71346217661.86%1025175958.27%60299760.38%193714071358459810445
1468421106234262126136341970413012556693423402104137706710826248074219091857722730687744821139439359311033085818.83%2413286.72%71491225366.18%1143171666.61%669100166.83%206615431257420808455
15823829013832362043241201200162121893241181701221115115010023638161703085727023200733815743244469080115894338720.09%3424885.96%2866241335.89%890277032.13%401118633.81%190613772146567929447
16824428013422802235741251301011149110394119150033113111318103280507787110959090219906797687392064627122816084057518.52%5377685.85%31459245859.36%1430245458.27%732126258.00%204614431932575974496
177245180350126815111736239013001297257362290220113979601022684887560987997932045606707721141772466106515783478123.34%4616985.03%91294219458.98%1150216753.07%606102259.30%204115061492463813434
Total Regular Season454265122013192411154198355822713759079123761465296227128630610128780518262634154127364277442875434983791290660641244389370510774315860969016243746619.12%254133286.93%3678471398656.11%69801336552.23%3635662154.90%1222788589939307153172796
Playoff
111055000002517862400000141404310000011381025436803012852520717210016754154223971111.34%61788.52%016934049.71%14128449.65%5913842.75%2671862187812665
1262400000614-83120000036-33120000038-54611170101311020432128159491201474349.30%47589.36%08319143.46%8321039.52%338638.37%14493172528138
131156000002125-4532000001210262400000915-610213657000758241081688522763167201861112.79%65789.23%118235551.27%18833855.62%8116050.63%2651782688714172
1451400000710-33030000037-42110000043127142100021413203442441163443863226.25%17570.59%09318650.00%9618153.04%397750.65%14095126447136
1562400000810-23120000034-13120000056-1481523010242136051443717938659628517.86%30486.67%04615829.11%4321220.28%167022.86%11076187436728
1651400000812-4211000004403030000048-4281321100422114035363711831689329310.34%34391.18%08916753.29%8917052.35%356752.24%12888130386432
Total Playoff431627000007588-1322814000003945-621813000003643-7327513220715028232297703152833319662696178463153611.43%2543187.80%1662139747.39%640139545.88%26359843.98%10567191105345552274