Barracuda

GP: 50 | W: 27 | L: 20 | OTL: 3 | P: 57
GF: 186 | GA: 165 | PP%: 11.65% | PK%: 80.41%
GM : Sebastien Gagné | Morale : 50 | Team Overall : 62
Next Games #784 vs Canucks

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Gabriel Dumont0X100.006040706569888462706364596273783450640
2Nathan Walker0X100.007542886467778565756263666569715150640
3Nicolas Aube-Kubel0X100.008241766776748465556362566568706150640
4Jan Jenik0XX100.007143656674877867666460616863656650640
5Mason Shaw0X100.006554626667788464756167696367656050640
6Matej Blumel0X100.006537956674877165666063596465636150630
7Jonas Rondbjerg0X100.006838956481808562606159636264666550630
8Lucas Condotta0X100.008041756382797457745866596165684250620
9Shane Bowers0X100.006638916078797762635860596164667850610
10Cole Fonstad0X100.006335945863788156585959535763655750590
11Jan Mysak0X100.005836945867776657615356625961637350580
12Dylan Samberg0X100.006943846590858064306654764963647250680
13Simon Edvinsson0X100.008043706794847165306266685360629050670
14Riley Stillman0X100.008159776577857963307155704965665750670
15Alexander Alexeyev0X100.007638836389857962306458665064667650660
16Jakub Zboril0X100.007336906778846566306855675165678150660
17Lassi Thomson0X100.006637766572848263306858615063658250640
18Reilly Walsh0X100.006037886571828767306854575064666350630
19Alex Green0X100.007342795482658153305653574665675650600
20Michael Karow0X100.007140785680676855305853574665675650600
21Daniil Chayka0X100.007238955381637052305453564561637550580
Scratches
1Collin Adams0X100.006035955669707155595657545665674750570
2Matej Pekar0X100.006539725474737053625551545263656250560
3Aleksandr Kisakov0X100.006037845460696853525156505561637150550
TEAM AVERAGE100.00694082627678776150615861566466645062
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Adam Scheel100.00555859825453555453555464714350580
Scratches
TEAM AVERAGE100.0055585982545355545355546471435058
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Nolan Pratt65747767726778CAN4891,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Gabriel DumontBarracuda (San)C502029493234056861814713211.05%1287217.4503377220261293173.37%79600011.1200000423
2Nathan WalkerBarracuda (San)LW37232447343954359148479115.54%475420.40404301230004855273.26%17200011.2500100452
3Dylan SambergBarracuda (San)D44531361345572426125488.20%6094521.49134241060001136110.00%000000.7600001031
4Jonas RondbjergBarracuda (San)RW3718163422801440108309216.67%355515.020114350000413181.54%6500011.2200000231
5Mason ShawBarracuda (San)C3172532233810585010432916.73%656018.0835814820004582175.55%49900001.1400101401
6Nicolas Aube-KubelBarracuda (San)RW37131730253407136104226812.50%160916.49235251260000351063.77%6900000.9800000132
7Matej BlumelBarracuda (San)RW371316292160303391276914.29%345412.28011947000004085.00%2000011.2800000501
8Lassi ThomsonBarracuda (San)D5182028-24601164962274412.90%5971614.063142047000014000.00%000000.7800000104
9Alexander AlexeyevBarracuda (San)D509192823600973179195211.39%4789717.94448321220220130100.00%000000.6200000133
10Jakub ZborilBarracuda (San)D37225272430040266229343.23%2979221.43246391250001134000.00%000000.6800000001
11Simon EdvinssonBarracuda (San)D257182527455661856184612.50%1953921.6016729960001105000.00%000010.9300100222
12Cole FonstadBarracuda (San)LW371510252580302169203821.74%256715.331127520110122163.33%3000000.8800000114
13Riley StillmanBarracuda (San)D374182214702090276924305.80%2881722.10066531351013145100.00%000000.5400112011
14Michael KarowBarracuda (San)D37314173224034131631518.75%1248513.1100003000034000.00%000000.7000000000
15Alex GreenBarracuda (San)D37113143222048714827.14%1646012.4500013000127000.00%000000.6100000111
16Jan JenikBarracuda (San)C/RW127714814019848163814.58%123219.373141450000180065.00%2000001.2000000021
17Denis GurianovSan Jose SharksLW/RW19581311602397622556.58%146324.3823514690116890164.02%21400000.5600000001
18Lucas CondottaBarracuda (San)C3785138235523057224214.04%12767.4800000000000179.17%24000000.9400000230
19Reilly WalshBarracuda (San)D111910340914276173.70%1425222.951341849000045000.00%000000.7900000000
20Collin AdamsBarracuda (San)LW25246640673711265.41%02309.2300000000010066.67%900000.5200000000
21Shane BowersBarracuda (San)C505052208113382215.15%31272.5600014000050068.00%12500000.7800000201
22Daniil ChaykaBarracuda (San)D3313474010142325.00%41484.5100001011021000.00%000000.5400000001
23Matej PekarBarracuda (San)C251122001240125.00%0281.13000111123241064.29%1400001.4100000000
24Aleksandr KisakovBarracuda (San)RW13011200302100.00%1534.1400000000000050.00%200000.3700000000
25Jan MysakBarracuda (San)C37000-100014110.00%0330.9000015000070077.27%2200000.0000000000
Team Total or Average846178333511393566509756511516467105711.74%3261187914.042745723431362461031129724973.05%229700050.8600414302931
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Adam ScheelBarracuda (San)108000.9021.5953001141430000.0000100000
Team Total or Average108000.9021.5953001141430000.0000100000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam ScheelG241999-05-01No192 Lbs6 ft3NoNoNo4RFAPro & Farm300,000$0$0$NoLink
Aleksandr KisakovRW212002-11-01No150 Lbs5 ft10NoNoNo4ELCPro & Farm500,000$0$0$NoLink
Alex GreenD251998-06-18No194 Lbs6 ft3NoNoNo1RFAPro & Farm300,000$0$0$NoLink
Alexander AlexeyevD241999-11-15No213 Lbs6 ft4NoNoNo1RFAPro & Farm900,000$0$0$NoLink / NHL Link
Cole FonstadLW232000-04-24No165 Lbs5 ft10NoNoNo3RFAPro & Farm300,000$0$0$NoLink
Collin AdamsLW251998-04-24No200 Lbs5 ft9NoNoNo3RFAPro & Farm300,000$0$0$NoLink
Daniil ChaykaD212002-10-22No187 Lbs6 ft3NoNoNo4ELCPro & Farm500,000$0$0$NoLink
Dylan SambergD251999-01-24No219 Lbs6 ft4NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Gabriel DumontC331990-10-06No195 Lbs5 ft10NoNoNo2UFAPro & Farm400,000$0$0$NoLink / NHL Link
Jakub ZborilD271997-02-21No201 Lbs6 ft1NoNoNo4RFAPro & Farm500,000$0$0$NoLink / NHL Link
Jan JenikC/RW232000-09-15No185 Lbs6 ft1NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Jan MysakC212002-06-04No175 Lbs5 ft11NoNoNo4ELCPro & Farm500,000$0$0$NoLink
Jonas RondbjergRW241999-03-31No203 Lbs6 ft2NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Lassi ThomsonD232000-09-24No190 Lbs6 ft0NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Lucas CondottaC261997-06-19No223 Lbs6 ft1NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Mason ShawC251998-11-03No184 Lbs5 ft10NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Matej BlumelRW232000-05-31No200 Lbs6 ft0NoNoNo4RFAPro & Farm300,000$0$0$NoLink
Matej PekarC242000-02-10No185 Lbs6 ft1NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Michael KarowD251998-12-18No200 Lbs6 ft2NoNoNo3RFAPro & Farm300,000$0$0$NoLink
Nathan WalkerLW301994-02-07No187 Lbs5 ft9NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Nicolas Aube-KubelRW271996-05-10No207 Lbs6 ft0NoNoNo2RFAPro & Farm500,000$0$0$NoLink / NHL Link
Reilly WalshD241999-04-21No185 Lbs6 ft0NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Riley StillmanD251998-03-09No196 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$0$0$NoLink / NHL Link
Shane BowersC241999-07-30No186 Lbs6 ft2NoNoNo1RFAPro & Farm500,000$0$0$NoLink / NHL Link
Simon EdvinssonD212003-02-05No209 Lbs6 ft6NoNoNo4ELCPro & Farm900,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2524.52193 Lbs6 ft12.52432,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jan Jenik40122
2Nathan WalkerGabriel DumontNicolas Aube-Kubel30122
3Cole FonstadMason ShawJonas Rondbjerg20122
4Lucas CondottaMatej Blumel10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Riley StillmanJakub Zboril40122
2Alexander AlexeyevLassi Thomson30122
3Michael KarowAlex Green20122
4Riley Stillman10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jan Jenik60122
2Nathan WalkerGabriel DumontNicolas Aube-Kubel40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Riley StillmanJakub Zboril60122
2Alexander AlexeyevLassi Thomson40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Jan JenikGabriel Dumont40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Riley StillmanJakub Zboril60122
2Alexander AlexeyevLassi Thomson40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Riley StillmanJakub Zboril60122
240122Alexander AlexeyevLassi Thomson40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Jan JenikGabriel Dumont40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Riley StillmanJakub Zboril60122
2Alexander AlexeyevLassi Thomson40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jan JenikRiley StillmanJakub Zboril
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Jan JenikRiley StillmanJakub Zboril
Extra Forwards
Normal PowerPlayPenalty Kill
Shane Bowers, Jan Mysak, Mason ShawShane Bowers, Jan MysakMason Shaw
Extra Defensemen
Normal PowerPlayPenalty Kill
Michael Karow, Alex Green, Michael KarowAlex Green,
Penalty Shots
, , Jan Jenik, Gabriel Dumont, Nathan Walker
Goalie
#1 : , #2 :
Custom OT Lines Forwards
, , Jan Jenik, Gabriel Dumont, Nathan Walker, Mason Shaw, Mason Shaw, Nicolas Aube-Kubel, Jonas Rondbjerg, Matej Blumel, Lucas Condotta
Custom OT Lines Defensemen
Riley Stillman, Jakub Zboril, Alexander Alexeyev, Lassi Thomson, Michael Karow


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
5057L118633251817431271339553102512
All Games
GPWLOTWOTL SOWSOLGFGA
5025202300186165
Home Games
GPWLOTWOTL SOWSOLGFGA
27121221009996
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2313802008769
Last 10 Games
WLOTWOTL SOWSOL
710200
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2062411.65%2454880.41%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
60555457778453472
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1073159567.27%745118862.71%54078368.97%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
15111154946282551309


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
4 - 2023-08-1311IceHogs5Barracuda4LXBoxScore
5 - 2023-08-1415IceHogs5Barracuda3LBoxScore
11 - 2023-08-2042Barracuda1Silver Knights10LBoxScore
12 - 2023-08-2145Barracuda1Silver Knights4LBoxScore
16 - 2023-08-2571Silver Knights7Barracuda0LBoxScore
19 - 2023-08-2897Firebirds7Barracuda2LBoxScore
20 - 2023-08-29105Firebirds4Barracuda2LBoxScore
25 - 2023-09-03112Barracuda0Wranglers3LBoxScore
27 - 2023-09-05138Barracuda4Wranglers6LBoxScore
32 - 2023-09-10161Checkers4Barracuda6WBoxScore
34 - 2023-09-12179Checkers3Barracuda2LBoxScore
39 - 2023-09-17203Eagles5Barracuda1LBoxScore
40 - 2023-09-18216Eagles7Barracuda0LBoxScore
43 - 2023-09-21227Gulls3Barracuda4WXBoxScore
46 - 2023-09-24248Reign5Barracuda0LBoxScore
47 - 2023-09-25251Reign3Barracuda4WXBoxScore
51 - 2023-09-29275Barracuda6Firebirds4WBoxScore
53 - 2023-10-01284Barracuda8Roadrunners1WBoxScore
54 - 2023-10-02299Barracuda6Roadrunners4WBoxScore
60 - 2023-10-08328Silver Knights5Barracuda2LBoxScore
61 - 2023-10-09340Silver Knights4Barracuda0LBoxScore
67 - 2023-10-15368Wranglers3Barracuda1LBoxScore
68 - 2023-10-16378Wranglers3Barracuda6WBoxScore
72 - 2023-10-20396Roadrunners0Barracuda8WBoxScore
74 - 2023-10-22414Barracuda0Silver Knights2LBoxScore
75 - 2023-10-23424Barracuda1Silver Knights2LBoxScore
81 - 2023-10-29449Barracuda4Condors2WBoxScore
82 - 2023-10-30460Condors1Barracuda4WBoxScore
86 - 2023-11-03474Roadrunners0Barracuda7WBoxScore
88 - 2023-11-05485Barracuda5Reign2WBoxScore
89 - 2023-11-06498Barracuda4Reign2WBoxScore
92 - 2023-11-09510Reign2Barracuda4WBoxScore
95 - 2023-11-12528Condors1Barracuda7WBoxScore
96 - 2023-11-13543Barracuda4Condors3WBoxScore
99 - 2023-11-16553Barracuda8Checkers2WBoxScore
100 - 2023-11-17556Barracuda6Checkers1WBoxScore
103 - 2023-11-20586Barracuda2Eagles3LBoxScore
104 - 2023-11-21592Barracuda1Eagles3LBoxScore
107 - 2023-11-24606Condors3Barracuda4WBoxScore
109 - 2023-11-26620Wranglers1Barracuda6WBoxScore
110 - 2023-11-27634Wranglers1Barracuda7WBoxScore
116 - 2023-12-03666Barracuda1Canucks2LXBoxScore
117 - 2023-12-04682Barracuda3Canucks4LXBoxScore
123 - 2023-12-10695Barracuda7Condors2WBoxScore
124 - 2023-12-11707Condors2Barracuda7WBoxScore
128 - 2023-12-15723Barracuda2Gulls1WBoxScore
129 - 2023-12-16724Barracuda5Firebirds4WBoxScore
131 - 2023-12-18746Barracuda8Condors2WBoxScore
135 - 2023-12-22768Firebirds6Barracuda7WBoxScore
137 - 2023-12-24781Canucks6Barracuda1LBoxScore
138 - 2023-12-25784Canucks-Barracuda-
141 - 2023-12-28804Barracuda-Reign-
142 - 2023-12-29815Barracuda-Firebirds-
145 - 2024-01-01838Firebirds-Barracuda-
151 - 2024-01-07865Barracuda-Stars-
152 - 2024-01-08880Barracuda-Stars-
Trade Deadline --- Trades can’t be done after this day is simulated!
159 - 2024-01-15923Barracuda-IceHogs-
160 - 2024-01-16934Barracuda-IceHogs-
163 - 2024-01-19941Gulls-Barracuda-
166 - 2024-01-22962Roadrunners-Barracuda-
167 - 2024-01-23981Roadrunners-Barracuda-
170 - 2024-01-26993Reign-Barracuda-
172 - 2024-01-28995Barracuda-Wranglers-
174 - 2024-01-301021Barracuda-Wranglers-
177 - 2024-02-021033Barracuda-Gulls-
178 - 2024-02-031036Barracuda-Firebirds-
180 - 2024-02-051056Barracuda-Reign-
184 - 2024-02-091072Silver Knights-Barracuda-
186 - 2024-02-111086Stars-Barracuda-
187 - 2024-02-121091Stars-Barracuda-
193 - 2024-02-181127Barracuda-Roadrunners-
194 - 2024-02-191143Barracuda-Roadrunners-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance50,43326,032
Attendance PCT93.39%96.41%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
9 2832 - 94.40% 70,258$1,896,957$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
772,199$ 108,000$ 0$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 69,455$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
632,319$ 58 5,682$ 329,556$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
1282462402550234149854124110132011970494122130123011579361112344176510100838460209207086836861780550148618434907515.31%6006788.83%81391249255.82%1342249953.70%625115354.21%222915811752585981516
1282462402550234149854124110132011970494122130123011579361112344176510100838460209207086836861780550148618434907515.31%6006788.83%81391249255.82%1342249953.70%625115354.21%222915811752585981516
13685012001412611301313426700100118685034245000411436281110261463724210090887919770610658702132043292312954549019.82%3604088.89%71346217661.86%1025175958.27%60299760.38%193714071358459810445
13685012001412611301313426700100118685034245000411436281110261463724210090887919770610658702132043292312954549019.82%3604088.89%71346217661.86%1025175958.27%60299760.38%193714071358459810445
1468421106234262126136341970413012556693423402104137706710826248074219091857722730687744821139439359311033085818.83%2413286.72%71491225366.18%1143171666.61%669100166.83%206615431257420808455
1468421106234262126136341970413012556693423402104137706710826248074219091857722730687744821139439359311033085818.83%2413286.72%71491225366.18%1143171666.61%669100166.83%206615431257420808455
15823829013832362043241201200162121893241181701221115115010023638161703085727023200733815743244469080115894338720.09%3424885.96%2866241335.89%890277032.13%401118633.81%190613772146567929447
15823829013832362043241201200162121893241181701221115115010023638161703085727023200733815743244469080115894338720.09%3424885.96%2866241335.89%890277032.13%401118633.81%190613772146567929447
16824428013422802235741251301011149110394119150033113111318103280507787110959090219906797687392064627122816084057518.52%5377685.85%31459245859.36%1430245458.27%732126258.00%204614431932575974496
16824428013422802235741251301011149110394119150033113111318103280507787110959090219906797687392064627122816084057518.52%5377685.85%31459245859.36%1430245458.27%732126258.00%204614431932575974496
17724518035012681511173623901300129725736229022011397960102268488756090879979204506067077211772466106515783478123.34%4616985.03%91294219458.98%1150216753.07%606102259.30%204115061492463813434
17724518035012681511173623901300129725736229022011397960102268488756090879979204506067077211772466106515783478123.34%4616985.03%91294219458.98%1150216753.07%606102259.30%204115061492463813434
185025200230018616521271212021009996323138002008769185718633251812845347217436055545777127133955310252062411.65%2454880.41%41073159567.27%745118862.71%54078368.97%15111154946282551309
Total Regular Season95855526402841482232682131113748128613001619246162110265954772691340122224161647110554213253268580490729868411151083912275556058600932788312281966551274519057508095618.82%532771286.63%76167672956756.71%147052791852.67%78101402555.69%2596618872208256424111875901
Playoff
111055000002517862400000141404310000011381025436803012852520717210016754154223971111.34%61788.52%016934049.71%14128449.65%5913842.75%2671862187812665
111055000002517862400000141404310000011381025436803012852520717210016754154223971111.34%61788.52%016934049.71%14128449.65%5913842.75%2671862187812665
1262400000614-83120000036-33120000038-54611170101311020432128159491201474349.30%47589.36%08319143.46%8321039.52%338638.37%14493172528138
1262400000614-83120000036-33120000038-54611170101311020432128159491201474349.30%47589.36%08319143.46%8321039.52%338638.37%14493172528138
131156000002125-4532000001210262400000915-610213657000758241081688522763167201861112.79%65789.23%118235551.27%18833855.62%8116050.63%2651782688714172
131156000002125-4532000001210262400000915-610213657000758241081688522763167201861112.79%65789.23%118235551.27%18833855.62%8116050.63%2651782688714172
1451400000710-33030000037-42110000043127142100021413203442441163443863226.25%17570.59%09318650.00%9618153.04%397750.65%14095126447136
1451400000710-33030000037-42110000043127142100021413203442441163443863226.25%17570.59%09318650.00%9618153.04%397750.65%14095126447136
1562400000810-23120000034-13120000056-1481523010242136051443717938659628517.86%30486.67%04615829.11%4321220.28%167022.86%11076187436728
1562400000810-23120000034-13120000056-1481523010242136051443717938659628517.86%30486.67%04615829.11%4321220.28%167022.86%11076187436728
Total Playoff76304600000134152-18401426000007082-12361620000006470-6601342383720100484240172605604945881696476109815065726611.54%4405687.27%21146246046.59%1102245044.98%456106242.94%185512621948613976484