Phantoms

GP: 49 | W: 29 | L: 14 | OTL: 6 | P: 64
GF: 154 | GA: 113 | PP%: 16.60% | PK%: 85.97%
GM : Kriss Cardenas | Morale : 50 | Team Overall : 63
Next Games #760 vs Griffins

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Tyson Jost0X100.006740866872808666746560706568698250650
2Liam Foudy0XX100.007038936979867965666163646866678150650
3Riley Nash0X100.006939786375838062706159656279774250640
4Seth Griffith0XX100.005837856467758663766859586171734550630
5Mike Hardman0XXX98.007738856381798462585660615965674250630
6Marian Studenic0XX100.006837896275808557616358606266685350620
7Matthew Strome0X100.007941805988697558605755565465675850600
8Hayden Hodgson0X100.007755535882697757605655595768703650600
9Cory Conacher0XXX100.005640705965747558555756545975772350590
10Nikolai Knyzhov0X100.007640826288837561306059675066684250660
11Adam Ginning0X100.007342706383808559305862645065666950650
12Cameron Crotty0X100.007939855980758258305756625165676250630
13Steven Kampfer0X100.006339786172777958306354564776813050620
14Helge Grans0X100.007840875887698156305452574562647650620
15Nolan Allan (R)0X100.007055755879657057305654624661637750610
16Cameron Gaunce0X100.006742705876677754305552574574763850600
17Artemi Kniazev0X100.005939825768807455305951544663657250590
Scratches
TEAM AVERAGE99.88704179617776795948595760556870555062
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Matt Tomkins100.00777671857675777675777670845150750
2Luke Cavallin100.00657167806463656463656463694550650
Scratches
TEAM AVERAGE100.0071746983706971706971706777485070
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Mike Vellucci73697271878160USA5881,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mike HardmanPhantoms (Phi)C/LW/RW4922224419675116651554610414.19%1299420.297613422131012594159.70%6700000.8801000703
2Riley NashPhantoms (Phi)C492019391040077991443511213.89%15103021.0479163319000051580058.63%99100000.7626000326
3Matt IrwinPhiladelphia FlyersD4092635165610815668295313.24%5692523.155813551870001178300.00%000000.7600002321
4Adam GinningPhantoms (Phi)D4911233417715853885234812.94%4292618.906713571730221165110.00%000000.7300001230
5Seth GriffithPhantoms (Phi)C/RW49102333141202772133481187.52%697719.9438112719301151081065.74%10800000.6803000114
6Marian StudenicPhantoms (Phi)LW/RW499213018180515012132657.44%1088518.0831215321930001391150.60%8300000.6800000004
7Tyson JostPhantoms (Phi)C2412162815155369886207513.95%1459925.000552610810141093162.74%73800000.9314010232
8Matthew StromePhantoms (Phi)LW491511264455634480275218.75%769314.142133230000102060.00%5500010.7500001330
9Hayden HodgsonPhantoms (Phi)RW499172697010994010028499.00%1267513.781451085000102061.76%6800000.7700002214
10Cameron CrottyPhantoms (Phi)D496192517520613251163711.76%3993319.06369311710111171000.00%000000.5400000121
11Nikolai KnyzhovPhantoms (Phi)D348172518340473763263912.70%3976922.635510401400001157300.00%000000.6500000122
12Cory ConacherPhantoms (Phi)C/LW/RW4311122311215168272255415.28%468215.860001130002773152.16%62500010.6700000431
13Liam FoudyPhantoms (Phi)C/RW174610128022475019428.00%543825.791129640001921053.25%50700000.4602000101
14Helge GransPhantoms (Phi)D40191010480631812298.33%2145811.4600006000024100.00%200000.4400000011
15Steven KampferPhantoms (Phi)D331898200211413167.69%1739311.9400011000055000.00%000000.4600000000
16Nolan AllanPhantoms (Phi)D49369034203928317259.68%174348.8700000000001039.29%2800000.4100202010
17Artemi KniazevPhantoms (Phi)D490551002160100.00%1761.5702241900005000.00%000001.3000000010
18Cameron GauncePhantoms (Phi)D4902222003097170.00%92615.330000000000000.00%100000.1500000000
Team Total or Average77015126241320163165936830127738590511.82%3261215615.794374117371178624625141326557.41%327300020.68316218302530
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Matt TomkinsPhantoms (Phi)3825940.9191.84231125718770000.82417380411
2Luke CavallinPhantoms (Phi)52120.9172.1630500111330000.3333541000
Team Total or Average43271060.9191.882617258210100000.750204341411


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam GinningD252000-01-13No196 Lbs6 ft3NoNoNo3RFAPro & Farm500,000$0$0$NoLink / NHL Link
Artemi KniazevD242001-01-04No178 Lbs5 ft11NoNoNo2RFAPro & Farm500,000$0$0$NoLink / NHL Link
Cameron CrottyD251999-05-05No182 Lbs6 ft3NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Cameron GaunceD341990-03-19No194 Lbs6 ft1NoNoNo2UFAPro & Farm500,000$0$0$NoLink / NHL Link
Cory ConacherC/LW/RW351989-12-14No185 Lbs5 ft8NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Hayden HodgsonRW281996-03-02No208 Lbs6 ft2NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Helge GransD222002-05-10No205 Lbs6 ft4NoNoNo2ELCPro & Farm900,000$0$0$NoLink / NHL Link
Liam FoudyC/RW252000-02-04No193 Lbs6 ft2NoNoNo1RFAPro & Farm900,000$0$0$NoLink / NHL Link
Luke CavallinG232001-04-29No196 Lbs6 ft2NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Marian StudenicLW/RW261998-10-28No190 Lbs6 ft1NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Matt TomkinsG301994-06-19No191 Lbs6 ft4NoNoNo3UFAPro & Farm500,000$0$0$NoLink / NHL Link
Matthew StromeLW261999-01-06No206 Lbs6 ft4NoNoNo4RFAPro & Farm300,000$0$0$NoLink / NHL Link
Mike HardmanC/LW/RW261999-02-05No205 Lbs6 ft2NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Nikolai KnyzhovD261998-03-20No222 Lbs6 ft3NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Nolan AllanD212003-04-28Yes195 Lbs6 ft2NoNoNo4ELCPro & Farm500,000$0$0$NoNHL Link
Riley NashC351989-05-09No187 Lbs6 ft1NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Seth GriffithC/RW321993-01-04No190 Lbs5 ft9NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Steven KampferD361988-09-24No198 Lbs5 ft11NoNoNo2UFAPro & Farm500,000$0$0$NoLink / NHL Link
Tyson JostC261998-03-14No187 Lbs5 ft11NoNoNo2RFAPro & Farm780,000$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1927.63195 Lbs6 ft12.00483,158$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Mike Hardman40122
2Marian StudenicRiley NashSeth Griffith30122
3Matthew StromeHayden Hodgson20122
4Riley Nash10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Adam GinningCameron Crotty30122
320122
4Nolan AllanCameron Gaunce10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Mike Hardman60122
2Marian StudenicRiley NashSeth Griffith40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Adam GinningCameron Crotty40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Riley NashSeth Griffith40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Adam GinningCameron Crotty40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Adam GinningCameron Crotty40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Riley NashSeth Griffith40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Adam GinningCameron Crotty40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Mike Hardman
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Mike Hardman
Extra Forwards
Normal PowerPlayPenalty Kill
Hayden Hodgson, Matthew Strome, Hayden Hodgson, Matthew Strome
Extra Defensemen
Normal PowerPlayPenalty Kill
Artemi Kniazev, , Artemi Kniazev,
Penalty Shots
, , Riley Nash, Seth Griffith, Mike Hardman
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4964L11542734271321119435265797304
All Games
GPWLOTWOTL SOWSOLGFGA
4923143234154113
Home Games
GPWLOTWOTL SOWSOLGFGA
2512712128160
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2411720227353
Last 10 Games
WLOTWOTL SOWSOL
360100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2594316.60%2783985.97%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
400465434426250367
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
814145056.14%806151653.17%38769755.52%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
12939311109342577298


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
9 - 2024-09-2416Wolfpack3Phantoms4WBoxScore
15 - 2024-09-3036Phantoms2Penguins1WBoxScore
16 - 2024-10-0151Penguins1Phantoms0LXXBoxScore
22 - 2024-10-0770Phantoms1Wolfpack2LBoxScore
23 - 2024-10-0889Griffins2Phantoms3WXBoxScore
24 - 2024-10-0998Griffins4Phantoms3LXBoxScore
27 - 2024-10-12106Phantoms3Bears4LXXBoxScore
30 - 2024-10-15129Phantoms5Thunderbirds1WBoxScore
34 - 2024-10-19144Phantoms2Penguins1WBoxScore
36 - 2024-10-21152Penguins0Phantoms1WBoxScore
37 - 2024-10-22163Comets3Phantoms1LBoxScore
41 - 2024-10-26186Penguins3Phantoms2LBoxScore
43 - 2024-10-28195Phantoms2Thunderbirds5LBoxScore
44 - 2024-10-29209Bears1Phantoms6WBoxScore
50 - 2024-11-04232Phantoms1Bruins2LXXBoxScore
51 - 2024-11-05249Phantoms2Bruins3LBoxScore
55 - 2024-11-09261Phantoms1Wolfpack3LBoxScore
57 - 2024-11-11271Bears1Phantoms6WBoxScore
58 - 2024-11-12287Rocket1Phantoms4WBoxScore
62 - 2024-11-16303IceHogs1Phantoms4WBoxScore
65 - 2024-11-19325Bears0Phantoms7WBoxScore
66 - 2024-11-20336Phantoms4Bears0WBoxScore
68 - 2024-11-22341Phantoms7Marlies1WBoxScore
70 - 2024-11-24351Phantoms7Monsters0WBoxScore
72 - 2024-11-26367Phantoms3Monsters2WBoxScore
76 - 2024-11-30389Bruins4Phantoms3LXXBoxScore
78 - 2024-12-02401Marlies1Phantoms3WBoxScore
79 - 2024-12-03413Phantoms1Penguins2LBoxScore
85 - 2024-12-09431Phantoms4Penguins3WXBoxScore
86 - 2024-12-10446Checkers1Phantoms6WBoxScore
89 - 2024-12-13463Checkers1Phantoms3WBoxScore
92 - 2024-12-16472Phantoms3Comets2WXBoxScore
93 - 2024-12-17485Phantoms7Crunch3WBoxScore
96 - 2024-12-20501Phantoms4Bears1WBoxScore
99 - 2024-12-23515Wolfpack4Phantoms3LBoxScore
100 - 2024-12-24524Phantoms3Wolfpack2WXXBoxScore
101 - 2024-12-25538Phantoms3Islanders2WXXBoxScore
104 - 2024-12-28552Senators2Phantoms3WXXBoxScore
106 - 2024-12-30562Phantoms2Americans1WBoxScore
107 - 2024-12-31572Americans5Phantoms0LBoxScore
113 - 2025-01-06607Thunderbirds3Phantoms2LXBoxScore
114 - 2025-01-07620Islanders2Phantoms1LBoxScore
115 - 2025-01-08629Phantoms4Penguins2WBoxScore
118 - 2025-01-11635Phantoms1Islanders7LBoxScore
127 - 2025-01-20680Monsters3Phantoms6WBoxScore
128 - 2025-01-21698Wolfpack5Phantoms2LBoxScore
134 - 2025-01-27724Phantoms1Penguins3LBoxScore
135 - 2025-01-28735Crunch3Phantoms6WBoxScore
136 - 2025-01-29745Penguins6Phantoms2LBoxScore
139 - 2025-02-01760Phantoms-Griffins-
141 - 2025-02-03771Phantoms-Griffins-
142 - 2025-02-04786Phantoms-IceHogs-
145 - 2025-02-07803Phantoms-Admirals-
148 - 2025-02-10819Islanders-Phantoms-
149 - 2025-02-11833Islanders-Phantoms-
150 - 2025-02-12842Phantoms-Bears-
156 - 2025-02-18871Phantoms-Checkers-
Trade Deadline --- Trades can’t be done after this day is simulated!
157 - 2025-02-19883Phantoms-Checkers-
162 - 2025-02-24906Penguins-Phantoms-
164 - 2025-02-26925Penguins-Phantoms-
167 - 2025-03-01939Admirals-Phantoms-
169 - 2025-03-03949Crunch-Phantoms-
170 - 2025-03-04967Bruins-Phantoms-
176 - 2025-03-10993Phantoms-Senators-
177 - 2025-03-111008Phantoms-Rocket-
181 - 2025-03-151028Phantoms-Islanders-
183 - 2025-03-171045Bears-Phantoms-
184 - 2025-03-181057Thunderbirds-Phantoms-
190 - 2025-03-241080Phantoms-Crunch-
191 - 2025-03-251100Bears-Phantoms-
197 - 2025-03-311128Monsters-Phantoms-
198 - 2025-04-011140Phantoms-Bears-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance47,23323,831
Attendance PCT94.47%95.32%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
11 2843 - 94.75% 70,774$1,769,347$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
743,831$ 91,800$ 0$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 60,393$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
778,513$ 63 5,486$ 345,618$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
1282521903413260123137413070110215455994122120231110668381192604777370180967783240607498108381588471152718375177414.31%6035291.38%71695273262.04%1368228659.84%744116463.92%230216431674573979526
1376462102142227137903826110001012380433820100213210457471072274106370150827861200306646536721513452141516444597816.99%5385989.03%51301240554.10%1185214155.35%528103451.06%213915321560524896483
147634260148319514649381814002221007822381612012619568279319534253718064507219220618655633169649095114603606116.94%3614886.70%11379242056.98%1181217454.32%569109252.11%205414741648521919478
158237360025224922029412316000201431043941142000232106116-108824944369203092767625760874815874193162693415534297016.32%3725684.95%11530274655.72%1218229653.05%680123255.19%209815051881579976496
16825117034522791501294128601240163659841231102212116853112427950678511401179361238308028087601789545101515114186515.55%4085586.52%31573259760.57%1357231758.57%689116459.19%228316721719550964512
17723820053332381419736171104112112644836219012211267749982384476850130109695221520740703682159844882013603656016.44%3524288.07%31413227862.03%1186205057.85%611101959.96%202114731492479850457
18723132042032302141636181400103123982536131804100107116-975230420650030101755021340726685707164946386213063615916.34%3497179.66%31375225860.89%1039173160.02%670106962.68%205515101432463853463
194923140323415411341251270121281602124117020227353206415427342704625036713214004654344211943526579732594316.60%2783985.97%2814145056.14%806151653.17%38769755.52%12939311109342577298
Total Regular Season59131218502122292218321244588296172860791111999604395295140990141318118336401937681832331851502786271155446216897400563855635208129583847818111644316851016.10%326142287.06%25110801888658.67%93401651156.57%4878847157.58%162471174612518403670183717
Playoff
112416800000584414116500000262241310300000322210325810015803015192058701771851785341464485231932311.92%1982089.90%242981352.77%43481053.58%16734348.69%626424614202316155
12954000002119243100000981523000001211110213960000777222056677620447193199921010.87%74691.89%118833855.62%16330852.92%8814560.69%2571742207812565
13514000001012-22020000035-2312000007702101828000262121048403311426991074237.14%46980.43%09917257.56%8117546.29%235740.35%11779123405928
161165000002527-2642000001615152300000912-3122544690008672670848878267671251907157.04%58886.21%017536348.21%17135348.44%7615848.10%2731892788614269
17624000001320-730300000410-632100000910-1413263900055313805541421694911610029310.34%47785.11%08018343.72%8518845.21%378145.68%12582162477233
Total Playoff553025000001271225261313000005860-229171200000696276012722735403037433913350420421407128833598111194274410.30%4235088.18%3971186951.95%934183450.93%39178449.87%14009491400454716353