Phantoms

GP: 18 | W: 8 | L: 6 | OTL: 4 | P: 20
GF: 43 | GA: 48 | PP%: 12.62% | PK%: 77.11%
GM : Kriss Cardenas | Morale : 50 | Team Overall : 62
Next Games #294 vs Wolfpack

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Logan Shaw0XX99.007640876685928665806762646371765150670
2Liam Foudy0XXX99.006436957278807767636162696562638250650
3Malte Stromwall0X99.006438856473877263696660626569713650630
4Hayden Hodgson0X100.007345606282767861586560625967693750630
5Seth Griffith0XX100.006236806267778664746557586170724650620
6Cory Conacher0XXX100.005637896365716258636159556174762350600
7Matthew Strome0X99.007941835888707856555453595364665950600
8Cameron Hillis0X100.005536875867756756715250545763656650560
9Nikolai Knyzhov0X99.007540856388836562305861655265674250650
10Adam Ginning0X100.007441726083827257305958644963657150640
11Ryan Merkley0X100.006139746672838464306354564963658150630
12Matt Tennyson0X100.007242735781668556305853594773752650620
13Steven Kampfer0X100.006339795972767058306255574875773250610
14Helge Grans0X100.007840925687668154305553584661637650610
15Jeremy Groleau0X100.007339895682687754305553574664664350600
16Cameron Crotty0X100.007139865480688553305452564564666350600
17Cameron Gaunce0X100.006742705576708154305654554673754250600
18Artemi Kniazev0X100.006137786168798359306053554762647350600
Scratches
1Matt Irwin0X73.018148836480817461306357694977762150670
TEAM AVERAGE98.32694081617876775945605660536769515062
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
1Nolan Maier74.50685758706766686766686762674450650
TEAM AVERAGE74.0068575870676668676668676267445065
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Mike Vellucci71707369857962USA5791,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Malte StromwallPhantoms (Phi)RW185101566013305415399.26%240022.2724611880000392059.57%4700000.7501000110
2Hayden HodgsonPhantoms (Phi)RW1877142301031295385313.21%135419.7131414800001283065.52%2900000.7900020301
3Ryan MerkleyPhantoms (Phi)D18491351203142981513.79%1736620.372352079000058100.00%000000.7100000001
4Logan ShawPhantoms (Phi)C/RW145813622042356125268.20%635525.3603313690003471063.25%41900010.7312000111
5Liam FoudyPhantoms (Phi)C/LW/RW185611512015377319526.85%344224.5911215860002671050.00%13200000.5002000021
6Seth GriffithPhantoms (Phi)C/RW18279-14013444017255.00%335019.460339770000130063.53%32900000.5100000010
7Adam GinningPhantoms (Phi)D180883200256227120.00%1936820.50033167900005400100.00%100000.4300000000
8Matthew StromePhantoms (Phi)LW1862881551693262518.75%134118.9921310820000280047.37%3800000.4700001011
9Matt IrwinPhantoms (Phi)D16268339153319228169.09%1234321.501121067000043000.00%000100.4700012010
10Nikolai KnyzhovPhantoms (Phi)D18077211525133512220.00%1742823.800222689000163000.00%000000.3300100002
11Cameron HillisPhantoms (Phi)C18325-42012231981315.79%227615.3700003000000064.94%7700000.3600000100
12Matt TennysonPhantoms (Phi)D18235-126101811103920.00%519711.0011211000003000.00%000000.5100002010
13Helge GransPhantoms (Phi)D15134-26011971814.29%517611.790000000000000.00%100000.4500000001
14Cory ConacherPhantoms (Phi)C/LW/RW18033-720528336190.00%131217.350003250000210053.92%21700000.1900000000
15Steven KampferPhantoms (Phi)D18112-480241316376.25%623513.0610110000010150.00%400000.1700000000
16Artemi KniazevPhantoms (Phi)D18011-200119100.00%0563.110008900001000.00%000000.3600000000
17Jeremy GroleauPhantoms (Phi)D18000000010000.00%1362.0000006000015000.00%000000.0000000000
18Cameron CrottyPhantoms (Phi)D18000-120110100.00%0372.1000002000021000.00%000000.0000000000
19Cameron GauncePhantoms (Phi)D18000-210010411320.00%31719.510000000000000.00%100000.0000000000
Team Total or Average333438312616227452983275261513438.17%104525315.7813233615786000075088159.85%129500110.4815135688
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Nolan MaierPhantoms (Phi)136330.9061.7973602222340100.3336130110
Team Total or Average136330.9061.7973602222340100.3336130110


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam GinningD232000-01-13No196 Lbs6 ft3NoNoNo4RFAPro & Farm500,000$0$0$NoLink
Artemi KniazevD222001-01-04No178 Lbs5 ft11NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Cameron CrottyD241999-05-05No182 Lbs6 ft3NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Cameron GaunceD331990-03-19No194 Lbs6 ft1NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Cameron HillisC232000-06-24No175 Lbs5 ft9NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Cory ConacherC/LW/RW331989-12-14No185 Lbs5 ft8NoNoNo1UFAPro & Farm500,000$0$0$NoLink
Hayden HodgsonRW271996-03-02No208 Lbs6 ft2NoNoNo1RFAPro & Farm300,000$0$0$NoLink
Helge GransD212002-05-10No205 Lbs6 ft4NoNoNo3ELCPro & Farm900,000$0$0$NoLink
Jeremy GroleauD241999-10-25No193 Lbs6 ft3NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Liam FoudyC/LW/RW232000-02-04No188 Lbs6 ft2NoNoNo2RFAPro & Farm900,000$0$0$NoLink / NHL Link
Logan ShawC/RW311992-10-05No208 Lbs6 ft3NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Malte StromwallRW291994-08-24No191 Lbs6 ft0NoNoNo2UFAPro & Farm300,000$0$0$NoLink
Matt Irwin (Out of Payroll)D361987-11-29No200 Lbs6 ft2NoNoNo1UFAPro & Farm1,000,000$0$0$YesLink / NHL Link
Matt TennysonD331990-04-23No205 Lbs6 ft2NoNoNo3UFAPro & Farm500,000$0$0$NoLink / NHL Link
Matthew StromeLW241999-01-06No206 Lbs6 ft4NoNoNo1RFAPro & Farm500,000$0$0$NoLink / NHL Link
Nikolai KnyzhovD251998-03-20No222 Lbs6 ft3NoNoNo1RFAPro & Farm300,000$0$0$NoLink
Nolan Maier (Out of Payroll)G222001-01-10No172 Lbs6 ft0NoNoNo2ELCPro & Farm300,000$0$0$YesLink
Ryan MerkleyD232000-08-14No186 Lbs6 ft0NoNoNo2RFAPro & Farm900,000$0$0$NoLink / NHL Link
Seth GriffithC/RW301993-01-04No190 Lbs5 ft9NoNoNo2UFAPro & Farm500,000$0$0$NoLink / NHL Link
Steven KampferD351988-09-24No198 Lbs5 ft11NoNoNo3UFAPro & Farm500,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2027.05194 Lbs6 ft11.90515,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Liam FoudyLogan ShawMalte Stromwall40122
2Matthew StromeSeth GriffithHayden Hodgson30122
3Cameron HillisCory ConacherCameron Gaunce20122
4Logan ShawCameron HillisLiam Foudy10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nikolai KnyzhovAdam Ginning40122
2Ryan MerkleyMatt Tennyson30122
3Steven KampferHelge Grans20122
4Cameron GaunceArtemi Kniazev10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Liam FoudyLogan ShawMalte Stromwall60122
2Matthew StromeSeth GriffithHayden Hodgson40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Nikolai KnyzhovAdam Ginning60122
2Ryan MerkleyMatt Tennyson40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Logan ShawLiam Foudy60122
2Malte StromwallHayden Hodgson40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Nikolai KnyzhovAdam Ginning60122
2Ryan MerkleyMatt Tennyson40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Logan Shaw60122Nikolai KnyzhovAdam Ginning60122
2Liam Foudy40122Ryan MerkleyMatt Tennyson40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Logan ShawLiam Foudy60122
2Malte StromwallHayden Hodgson40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nikolai KnyzhovAdam Ginning60122
2Ryan MerkleyMatt Tennyson40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Liam FoudyLogan ShawMalte StromwallNikolai KnyzhovAdam Ginning
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Liam FoudyLogan ShawMalte StromwallNikolai KnyzhovAdam Ginning
Extra Forwards
Normal PowerPlayPenalty Kill
Cory Conacher, Seth Griffith, Matthew StromeCory Conacher, Seth GriffithMatthew Strome
Extra Defensemen
Normal PowerPlayPenalty Kill
Cameron Crotty, Jeremy Groleau, Steven KampferCameron CrottyJeremy Groleau, Steven Kampfer
Penalty Shots
Logan Shaw, Liam Foudy, Malte Stromwall, Hayden Hodgson, Seth Griffith
Goalie
#1 : , #2 :
Custom OT Lines Forwards
Logan Shaw, Liam Foudy, Malte Stromwall, Hayden Hodgson, Seth Griffith, Matthew Strome, Matthew Strome, Cory Conacher, Cameron Hillis, ,
Custom OT Lines Defensemen
Nikolai Knyzhov, Adam Ginning, Ryan Merkley, Matt Tennyson, Steven Kampfer


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1820OTW1438312652639410422729802
All Games
GPWLOTWOTL SOWSOLGFGA
187612024348
Home Games
GPWLOTWOTL SOWSOLGFGA
84101022016
Visitor Games
GPWLOTWOTL SOWSOLGFGA
103511002332
Last 10 Games
WLOTWOTL SOWSOL
351100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1031312.62%831977.11%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
192145179151416122
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
34756761.20%28046660.09%14824560.41%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
507370367121218115


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
5 - 2023-08-1421Monsters0Phantoms4WBoxScore
6 - 2023-08-1525Senators4Phantoms3LXXBoxScore
11 - 2023-08-2038Phantoms1Thunderbirds2LXBoxScore
12 - 2023-08-2147Phantoms0Wolfpack3LBoxScore
13 - 2023-08-2260Thunderbirds0Phantoms1WBoxScore
19 - 2023-08-2888Phantoms5Bears1WBoxScore
20 - 2023-08-29103Wolfpack2Phantoms1LXXBoxScore
25 - 2023-09-03116Wolfpack2Phantoms3WBoxScore
26 - 2023-09-04133Phantoms1Thunderbirds3LBoxScore
30 - 2023-09-08143Phantoms2Thunderbirds3LBoxScore
33 - 2023-09-11166Bears1Phantoms5WBoxScore
34 - 2023-09-12174Phantoms5Bears3WBoxScore
39 - 2023-09-17195Phantoms0Rocket4LBoxScore
40 - 2023-09-18211Phantoms2Senators9LBoxScore
43 - 2023-09-21224Phantoms3Marlies1WBoxScore
46 - 2023-09-24242Bruins4Phantoms3LXBoxScore
47 - 2023-09-25258Americans3Phantoms0LBoxScore
53 - 2023-10-01276Phantoms4Wolfpack3WXBoxScore
54 - 2023-10-02294Phantoms-Wolfpack-
55 - 2023-10-03306Phantoms-Bruins-
60 - 2023-10-08319Bruins-Phantoms-
61 - 2023-10-09336Checkers-Phantoms-
65 - 2023-10-13352Checkers-Phantoms-
67 - 2023-10-15364Rocket-Phantoms-
68 - 2023-10-16373Thunderbirds-Phantoms-
73 - 2023-10-21399Phantoms-Checkers-
74 - 2023-10-22402Phantoms-Checkers-
79 - 2023-10-27429Comets-Phantoms-
82 - 2023-10-30457Bears-Phantoms-
83 - 2023-10-31466Checkers-Phantoms-
89 - 2023-11-06489Phantoms-Penguins-
90 - 2023-11-07503Phantoms-Bears-
95 - 2023-11-12524Wolfpack-Phantoms-
96 - 2023-11-13538Bears-Phantoms-
100 - 2023-11-17559Phantoms-Americans-
102 - 2023-11-19566Phantoms-Monsters-
103 - 2023-11-20574Phantoms-Monsters-
109 - 2023-11-26612Penguins-Phantoms-
110 - 2023-11-27629Marlies-Phantoms-
114 - 2023-12-01647Bears-Phantoms-
116 - 2023-12-03659Bears-Phantoms-
117 - 2023-12-04675Penguins-Phantoms-
123 - 2023-12-10690Penguins-Phantoms-
124 - 2023-12-11699Phantoms-Islanders-
128 - 2023-12-15718Phantoms-Bears-
131 - 2023-12-18739Crunch-Phantoms-
135 - 2023-12-22764Phantoms-Penguins-
138 - 2023-12-25783Phantoms-Checkers-
139 - 2023-12-26797Phantoms-Checkers-
144 - 2023-12-31819Phantoms-Comets-
145 - 2024-01-01836Islanders-Phantoms-
146 - 2024-01-02844Bears-Phantoms-
151 - 2024-01-07862Penguins-Phantoms-
152 - 2024-01-08872Phantoms-Penguins-
153 - 2024-01-09884Phantoms-Islanders-
Trade Deadline --- Trades can’t be done after this day is simulated!
156 - 2024-01-12900Phantoms-Penguins-
158 - 2024-01-14909Phantoms-Bruins-
159 - 2024-01-15920Phantoms-Bruins-
163 - 2024-01-19942Thunderbirds-Phantoms-
166 - 2024-01-22969Islanders-Phantoms-
167 - 2024-01-23976Penguins-Phantoms-
172 - 2024-01-28998Phantoms-Crunch-
173 - 2024-01-291010Phantoms-Penguins-
176 - 2024-02-011023Phantoms-Bears-
179 - 2024-02-041040Bruins-Phantoms-
180 - 2024-02-051053Monsters-Phantoms-
181 - 2024-02-061063Phantoms-Penguins-
186 - 2024-02-111077Phantoms-Bears-
187 - 2024-02-121096Islanders-Phantoms-
193 - 2024-02-181119Phantoms-Islanders-
194 - 2024-02-191136Penguins-Phantoms-
195 - 2024-02-201147Checkers-Phantoms-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance14,9557,363
Attendance PCT93.47%92.04%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
28 2790 - 92.99% 69,726$557,806$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
298,997$ 90,000$ 0$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 27,187$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
1,952,321$ 142 5,590$ 793,780$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
1282521903413260123137413070110215455994122120231110668381192604777370180967783240607498108381588471152718375177414.31%6035291.38%71695273262.04%1368228659.84%744116463.92%230216431674573979526
1282521903413260123137413070110215455994122120231110668381192604777370180967783240607498108381588471152718375177414.31%6035291.38%71695273262.04%1368228659.84%744116463.92%230216431674573979526
1376462102142227137903826110001012380433820100213210457471072274106370150827861200306646536721513452141516444597816.99%5385989.03%51301240554.10%1185214155.35%528103451.06%213915321560524896483
1376462102142227137903826110001012380433820100213210457471072274106370150827861200306646536721513452141516444597816.99%5385989.03%51301240554.10%1185214155.35%528103451.06%213915321560524896483
147634260148319514649381814002221007822381612012619568279319534253718064507219220618655633169649095114603606116.94%3614886.70%11379242056.98%1181217454.32%569109252.11%205414741648521919478
147634260148319514649381814002221007822381612012619568279319534253718064507219220618655633169649095114603606116.94%3614886.70%11379242056.98%1181217454.32%569109252.11%205414741648521919478
158237360025224922029412316000201431043941142000232106116-108824944369203092767625760874815874193162693415534297016.32%3725684.95%11530274655.72%1218229653.05%680123255.19%209815051881579976496
158237360025224922029412316000201431043941142000232106116-108824944369203092767625760874815874193162693415534297016.32%3725684.95%11530274655.72%1218229653.05%680123255.19%209815051881579976496
16825117034522791501294128601240163659841231102212116853112427950678511401179361238308028087601789545101515114186515.55%4085586.52%31573259760.57%1357231758.57%689116459.19%228316721719550964512
16825117034522791501294128601240163659841231102212116853112427950678511401179361238308028087601789545101515114186515.55%4085586.52%31573259760.57%1357231758.57%689116459.19%228316721719550964512
17723820053332381419736171104112112644836219012211267749982384476850130109695221520740703682159844882013603656016.44%3524288.07%31413227862.03%1186205057.85%611101959.96%202114731492479850457
17723820053332381419736171104112112644836219012211267749982384476850130109695221520740703682159844882013603656016.44%3524288.07%31413227862.03%1186205057.85%611101959.96%202114731492479850457
181876012024348-584100102201641035011002332-9204383126021416122526192145179153941042272981031312.62%831977.11%034756761.20%28046660.09%14824560.41%507370367121218115
Total Regular Season9585232840293852322939188210574782881310121320141610908702480235153017253218132997435512782939533382724144141136898812274101929039906789332062461681355119028519982915.95%535164387.98%40181293092358.63%152702699456.57%77901365557.05%2630518977203206581113926027
Playoff
112416800000584414116500000262241310300000322210325810015803015192058701771851785341464485231932311.92%1982089.90%242981352.77%43481053.58%16734348.69%626424614202316155
112416800000584414116500000262241310300000322210325810015803015192058701771851785341464485231932311.92%1982089.90%242981352.77%43481053.58%16734348.69%626424614202316155
12954000002119243100000981523000001211110213960000777222056677620447193199921010.87%74691.89%118833855.62%16330852.92%8814560.69%2571742207812565
12954000002119243100000981523000001211110213960000777222056677620447193199921010.87%74691.89%118833855.62%16330852.92%8814560.69%2571742207812565
13514000001012-22020000035-2312000007702101828000262121048403311426991074237.14%46980.43%09917257.56%8117546.29%235740.35%11779123405928
13514000001012-22020000035-2312000007702101828000262121048403311426991074237.14%46980.43%09917257.56%8117546.29%235740.35%11779123405928
Total Playoff7644320000017815028341816000007670642261600000102802288178314492060486458186005625845741704438148016586547211.01%6367088.99%61432264654.12%1356258652.44%556109051.01%2003135619176421002499