Wranglers

GP: 23 | W: 5 | L: 18 | OTL: 0 | P: 10
GF: 63 | GA: 128 | PP%: 12.50% | PK%: 78.87%
GM : Martin Thibault | Morale : 50 | Team Overall : 64
Next Games #342 vs Moose

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Eric Robinson0X100.007639946583808464616362736172703650660
2Sheldon Dries0XXX100.006941816765878266806368646770723550650
3Dryden Hunt0X100.007853806673848263696561626470723650640
4Mitchell Stephens0X100.006538846375828661706260666367696650640
5Kyle Clifford0X100.008386546184797859606357585680754550620
6James Hamblin0X100.005836936367767959835860616266674250610
7Luke Toporowski0X100.006038805769828158625960565863654450600
8Adam Raska0X100.007266576066728259535859615663654950600
9Nick Cicek0X100.007442706284798258306554634864664350640
10Declan Carlile0X100.006537846074768459305857624864664350620
11Andy Welinski0X100.006938925878757655305754564671735050610
Scratches
1Carl Berglund0X100.007338955782736254635653585564664350580
TEAM AVERAGE100.00704680627579806058615962576869445062
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jonas Johansson100.00808175937978807978807969835550780
2Vadim Zherenko100.00738076767271737271737263694950710
Scratches
TEAM AVERAGE100.0077817685767577767577766676525075
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bob Woods66737460827766CAN5671,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam RaskaRW232001-09-25No178 Lbs5 ft10NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Andy WelinskiD311993-04-27No201 Lbs6 ft1NoNoNo2UFAPro & Farm400,000$0$0$NoLink / NHL Link
Carl BerglundC242000-01-16No207 Lbs6 ft2NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Declan CarlileD242000-05-18No185 Lbs6 ft1NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Dryden HuntLW291995-11-24No193 Lbs6 ft0NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Eric RobinsonLW291995-06-14No211 Lbs6 ft2NoNoNo1UFAPro & Farm859,750$0$0$NoLink / NHL Link
James HamblinLW251999-04-27No185 Lbs5 ft10NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Jonas JohanssonG291995-09-19No219 Lbs6 ft5NoNoNo2UFAPro & Farm900,000$0$0$NoLink / NHL Link
Kyle CliffordLW331991-01-13No217 Lbs6 ft2NoNoNo2UFAPro & Farm400,000$0$0$NoLink / NHL Link
Luke ToporowskiLW232001-04-12No183 Lbs5 ft11NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Mitchell StephensC271997-02-05No203 Lbs6 ft0NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Nick CicekD242000-05-29No201 Lbs6 ft3NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Sheldon DriesC/LW/RW301994-04-23No180 Lbs5 ft9NoNoNo3UFAPro & Farm500,000$0$0$NoLink / NHL Link
Vadim ZherenkoG232001-03-15No176 Lbs6 ft2NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1426.71196 Lbs6 ft12.07425,696$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
230122
320122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
230122
320122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , , ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2310L1063120183822114931216649720
All Games
GPWLOTWOTL SOWSOLGFGA
23518000063128
Home Games
GPWLOTWOTL SOWSOLGFGA
123900003068
Visitor Games
GPWLOTWOTL SOWSOLGFGA
112900003360
Last 10 Games
WLOTWOTL SOWSOL
0100000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
881112.50%711578.87%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
26528826902528100
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
28867442.73%31182137.88%15138838.92%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
445314680156253113


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
8 - 2024-09-236Canucks6Wranglers0LBoxScore
10 - 2024-09-2524Canucks8Wranglers0LBoxScore
13 - 2024-09-2831Wranglers0Firebirds5LBoxScore
15 - 2024-09-3042Wranglers6Silver Knights3WBoxScore
16 - 2024-10-0153Wranglers5Silver Knights4WBoxScore
19 - 2024-10-0465Wranglers4Condors6LBoxScore
22 - 2024-10-0779Eagles8Wranglers2LBoxScore
24 - 2024-10-0996Eagles10Wranglers3LBoxScore
26 - 2024-10-11102Gulls5Wranglers0LBoxScore
28 - 2024-10-13111Gulls8Wranglers2LBoxScore
33 - 2024-10-18139Condors1Wranglers3WBoxScore
34 - 2024-10-19145Condors3Wranglers4WBoxScore
37 - 2024-10-22166Silver Knights3Wranglers5WBoxScore
38 - 2024-10-23171Silver Knights6Wranglers3LBoxScore
44 - 2024-10-29213Wranglers0Barracuda5LBoxScore
45 - 2024-10-30219Wranglers0Barracuda6LBoxScore
48 - 2024-11-02225Wranglers2Gulls7LBoxScore
50 - 2024-11-04237Wranglers4Roadrunners5LBoxScore
51 - 2024-11-05252Wranglers4Roadrunners6LBoxScore
57 - 2024-11-11274Wranglers4Moose7LBoxScore
59 - 2024-11-13294Wranglers4Moose6LBoxScore
64 - 2024-11-18316Roadrunners6Wranglers5LBoxScore
65 - 2024-11-19328Roadrunners4Wranglers3LBoxScore
68 - 2024-11-22342Moose-Wranglers-
69 - 2024-11-23349Moose-Wranglers-
72 - 2024-11-26372Wranglers-Firebirds-
73 - 2024-11-27379Wranglers-Firebirds-
76 - 2024-11-30395Wranglers-Reign-
78 - 2024-12-02406Silver Knights-Wranglers-
80 - 2024-12-04424Silver Knights-Wranglers-
88 - 2024-12-12457Canucks-Wranglers-
90 - 2024-12-14467Canucks-Wranglers-
92 - 2024-12-16478Moose-Wranglers-
94 - 2024-12-18499Moose-Wranglers-
99 - 2024-12-23518Wranglers-Eagles-
100 - 2024-12-24533Wranglers-Eagles-
103 - 2024-12-27543Roadrunners-Wranglers-
104 - 2024-12-28553Roadrunners-Wranglers-
107 - 2024-12-31576Wranglers-Gulls-
108 - 2025-01-01586Wranglers-Reign-
110 - 2025-01-03591Wranglers-Reign-
114 - 2025-01-07626Gulls-Wranglers-
115 - 2025-01-08627Gulls-Wranglers-
120 - 2025-01-13659Wranglers-Canucks-
121 - 2025-01-14675Wranglers-Canucks-
127 - 2025-01-20688Wranglers-Silver Knights-
128 - 2025-01-21702Wranglers-Silver Knights-
135 - 2025-01-28738Reign-Wranglers-
137 - 2025-01-30755Reign-Wranglers-
142 - 2025-02-04790Wranglers-Firebirds-
143 - 2025-02-05799Wranglers-Reign-
146 - 2025-02-08811Wranglers-Gulls-
148 - 2025-02-10822Canucks-Wranglers-
149 - 2025-02-11835Canucks-Wranglers-
152 - 2025-02-14847Firebirds-Wranglers-
153 - 2025-02-15855Firebirds-Wranglers-
156 - 2025-02-18870Wranglers-Moose-
Trade Deadline --- Trades can’t be done after this day is simulated!
157 - 2025-02-19885Wranglers-Moose-
163 - 2025-02-25924Wranglers-Canucks-
164 - 2025-02-26933Wranglers-Canucks-
169 - 2025-03-03956Firebirds-Wranglers-
171 - 2025-03-05971Firebirds-Wranglers-
176 - 2025-03-10998Wranglers-Condors-
177 - 2025-03-111014Wranglers-Gulls-
180 - 2025-03-141027Wranglers-Roadrunners-
181 - 2025-03-151035Wranglers-Roadrunners-
184 - 2025-03-181050Reign-Wranglers-
186 - 2025-03-201071Reign-Wranglers-
190 - 2025-03-241089Wranglers-Canucks-
191 - 2025-03-251105Wranglers-Canucks-
197 - 2025-03-311123Barracuda-Wranglers-
199 - 2025-04-021152Barracuda-Wranglers-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance22,97011,247
Attendance PCT95.71%93.73%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
24 2851 - 95.05% 71,328$855,936$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
359,210$ 59,598$ 0$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 22,512$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
1,711,872$ 132 5,325$ 702,900$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
1282442601632290223674120140042114611036412412012111441133110429046075016010710178268408658879182135579130717404766914.50%5328184.77%91636269160.80%1386242257.23%765127759.91%218816041841547926468
136828310611122321493413150311111410773415160300010910727222338460734084706219410654592674188450499113053676918.80%4077082.80%51138201456.50%1070205452.09%566103354.79%166512061674467761374
14683228032122291676234141700111110822834181103101119853476229390619260101754923470752763813244565863212662683513.06%2614781.99%11003205748.76%1079261441.28%45296047.08%144810501913472739338
15824725042222941901044124100410215584714123150012013910633110294480774180123828329380989968952216661885413334476213.87%3746083.96%01719282960.76%1409254155.45%724119660.54%207515391967552909450
1682165902311259414-1554192901101129198-694173001210130216-8642259383642100102866827310905914903299384483014314094911.98%35610071.91%21109257843.02%889244736.33%548136440.18%174612782327553863383
177240220423125518768361810032301268046362212010011291072297255464719112093847122200714752740198557384313063806216.32%3265084.66%21330225159.08%1152213154.06%593108354.76%179212901735493825415
1872184902300203359-15636112302000107176-69367260030096183-874320337157411084566123360798746783305991266014292783512.59%2977674.41%1809199440.57%865237136.48%456117138.94%139910032172479757335
19235180000063128-651239000003068-381129000003360-27106312018320252810082226528826901149312166497881112.50%711578.87%028867442.73%31182137.88%15138838.92%445314680156253113
Total Regular Season5492302580221911918161882-6627511212701310769179051227411813109943899977-7855418163052486812372572256447218019265596558915783178165000628310307271339214.45%262449980.98%2090321708852.86%81611740146.90%4255847250.22%12760928814313372260362881
Playoff
115140000069-32020000013-23120000056-12610160002219602630391254279923638.33%36391.67%06415541.29%9016753.89%305851.72%10466134416128
12514000001021-112020000038-531200000713-62101828000424115038393811729789127311.11%37975.68%08815855.70%7613655.88%487762.34%10874131396026
15514000001015-52020000016-531200000990210172700062217106567391394663892015.00%24579.17%012018564.86%7613456.72%427060.00%12292123315325
17624000001527-1230300000718-113210000089-141525400006721580495851233907311927518.52%31293.55%06917040.59%9521444.39%439644.79%12485170416530
Total Playoff21516000004172-31909000001235-231257000002937-81041701110001813954001781941676142072933911101210.91%1281985.16%034166851.05%33765151.77%16330154.15%460318559154240111