Marlies

GP: 72 | W: 9 | L: 62 | OTL: 1 | P: 19
GF: 141 | GA: 423 | PP%: 13.33% | PK%: 71.48%
GM : Sebastien Cloutier | Morale : 50 | Team Overall : 64

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Charles HudonXXX100.005939776870949366726567637169705950660
2Jayson MegnaXX100.007237836476827963746662646372742750650
3Richard PanikXX100.007339846781807566586562616874735650650
4Joseph CramarossaX100.008039696475767463716558626470725350630
5Sean MaloneX100.006334706674787165756463596567694750630
6Danny O'ReganXX100.005835946568788262736461636569704750630
7Stefan MatteauX100.007844795982786657716058645668706650620
8Pierre-Cedric LabrieX100.008043725389698454575556595576782150600
9Tyrell GoulbourneX100.006438715473666352575351565268705450560
10Dean KukanX100.006636896578868162307159635269713650660
11Cameron SchillingX100.007245705981736758306656624874762350630
12Seth HelgesonX100.008145645390638952305453584572773750620
13Ashton SautnerX100.006739755976676958305754564568703650600
14Keaton ThompsonX100.006241695671666855305453564567695450580
Scratches
TEAM AVERAGE100.00704076617775766054615860577072445062
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Malcolm Subban100.00747775837372747372747370836650730
2Troy Grosenick100.00757372767473757473757473874650730
Scratches
TEAM AVERAGE100.0075757480747375747375747285565073
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Dan Bylsma64616570757075USA521100,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Ashton SautnerMarlies (Tor)D727916-418601496351152813.73%766579.130000000000000.00%000000.4900000834
2Joseph CramarossaMarlies (Tor)C72000000003000.00%050.0800000000000066.67%900000.00010000102
3Tyrell GoulbourneMarlies (Tor)LW72000000000040.00%050.08000000000000100.00%200000.0001000307
Team Total or Average2167916-418601496354153212.96%766693.1000000000000072.73%1100000.4802000111313
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Troy GrosenickMarlies (Tor)20200.9134.00120208920000.000020100
Team Total or Average20200.9134.00120208920000.000020100


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Ashton SautnerD281994-05-27No195 Lbs6 ft1NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Cameron SchillingD341988-10-07No190 Lbs6 ft3NoNoNo4UFAPro & Farm500,000$0$0$NoLink / NHL Link
Charles HudonC/LW/RW281994-06-23No190 Lbs5 ft10NoNoNo4UFAPro & Farm785,662$0$0$NoLink / NHL Link
Danny O'ReganC/LW291994-01-30No180 Lbs5 ft10NoNoNo2UFAPro & Farm500,000$0$0$NoLink / NHL Link
Dean KukanD291993-07-08No190 Lbs6 ft2NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Jayson MegnaC/RW331990-02-01No195 Lbs6 ft1NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Joseph CramarossaC301992-10-26No190 Lbs6 ft1NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Keaton ThompsonD271995-09-14No182 Lbs6 ft0NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Malcolm SubbanG291993-12-21No215 Lbs6 ft2NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Pierre-Cedric LabrieLW361986-12-06No226 Lbs6 ft3NoNoNo1UFAPro & Farm500,000$0$0$NoLink
Richard PanikLW/RW321991-02-07No203 Lbs6 ft2NoNoNo2UFAPro & Farm300,000$0$0$NoLink / NHL Link
Sean MaloneC271995-04-30No197 Lbs6 ft0NoNoNo4RFAPro & Farm500,000$0$0$NoLink / NHL Link
Seth HelgesonD321990-10-08No219 Lbs6 ft4NoNoNo2UFAPro & Farm500,000$0$0$NoLink / NHL Link
Stefan MatteauC291994-02-23No208 Lbs6 ft2NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Troy GrosenickG331989-08-27No185 Lbs6 ft1NoNoNo1UFAPro & Farm1,000,000$0$0$NoLink / NHL Link
Tyrell GoulbourneLW291994-01-26No203 Lbs5 ft11NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1630.31198 Lbs6 ft11.88474,104$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
230122
320122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
230122
3Ashton Sautner20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
Joseph Cramarossa, , Tyrell GoulbourneJoseph Cramarossa, Tyrell Goulbourne
Extra Defensemen
Normal PowerPlayPenalty Kill
, Ashton Sautner, Ashton Sautner,
Penalty Shots
, , , ,
Goalie
#1 : , #2 :
Custom OT Lines Forwards
, , , , , , , , , ,
Custom OT Lines Defensemen
, , , ,


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
7219L214127341418803287919588132610
All Games
GPWLOTWOTL SOWSOLGFGA
727622001141423
Home Games
GPWLOTWOTL SOWSOLGFGA
36529100175210
Visitor Games
GPWLOTWOTL SOWSOLGFGA
36233100066213
Last 10 Games
WLOTWOTL SOWSOL
280000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2553413.33%2567371.48%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
682558630135745372
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
574175332.74%743250329.68%360116930.80%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
11087422454518768307


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2022-09-281Marlies1Stars5LBoxScore
3 - 2022-09-3020Marlies1Barracuda3LBoxScore
4 - 2022-10-0129Comets8Marlies0LBoxScore
8 - 2022-10-0556Sound Tigers4Marlies1LBoxScore
12 - 2022-10-0980IceHogs3Marlies6WBoxScore
15 - 2022-10-12100Americans5Marlies1LBoxScore
17 - 2022-10-14116Marlies1Bruins8LBoxScore
18 - 2022-10-15128Marlies3Checkers7LBoxScore
20 - 2022-10-17142Marlies2Stars6LBoxScore
21 - 2022-10-18154Phantoms6Marlies2LBoxScore
24 - 2022-10-21175Rocket5Marlies2LBoxScore
27 - 2022-10-24193Roadrunners5Marlies6WBoxScore
29 - 2022-10-26212Marlies0Comets8LBoxScore
31 - 2022-10-28225Comets6Marlies4LBoxScore
33 - 2022-10-30236Marlies1Thunderbirds8LBoxScore
35 - 2022-11-01256Americans9Marlies2LBoxScore
38 - 2022-11-04274Marlies1Wolf Pack8LBoxScore
40 - 2022-11-06289Marlies3Roadrunners4LBoxScore
42 - 2022-11-08301Devils4Marlies1LBoxScore
44 - 2022-11-10319Marlies0Wranglers8LBoxScore
45 - 2022-11-11329Marlies2Penguins7LBoxScore
47 - 2022-11-13343Crunch11Marlies2LBoxScore
50 - 2022-11-16365Rampage8Marlies1LBoxScore
52 - 2022-11-18379Marlies2Devils8LBoxScore
54 - 2022-11-20394Wolf Pack7Marlies1LBoxScore
56 - 2022-11-22410Marlies0Americans3LBoxScore
58 - 2022-11-24420Marlies1Phantoms6LBoxScore
60 - 2022-11-26431Marlies5Reign4WBoxScore
62 - 2022-11-28446Gulls3Marlies4WXBoxScore
64 - 2022-11-30465Wranglers5Marlies2LBoxScore
66 - 2022-12-02477Marlies0Wild8LBoxScore
68 - 2022-12-04492Marlies0Monsters4LBoxScore
70 - 2022-12-06507Firebirds4Marlies6WBoxScore
72 - 2022-12-08525Marlies5Admirals4WXBoxScore
74 - 2022-12-10538Admirals6Marlies4LBoxScore
78 - 2022-12-14561Eagles7Marlies0LBoxScore
80 - 2022-12-16578Marlies1Moose5LBoxScore
82 - 2022-12-18592Sound Tigers6Marlies0LBoxScore
84 - 2022-12-20614Marlies0Checkers3LBoxScore
86 - 2022-12-22626Marlies4Crunch5LBoxScore
87 - 2022-12-23639Roadrunners5Marlies4LXXBoxScore
89 - 2022-12-25654Marlies5Gulls2WBoxScore
92 - 2022-12-28669Bruins5Marlies1LBoxScore
94 - 2022-12-30688Marlies2Eagles8LBoxScore
96 - 2023-01-01701Wild7Marlies0LBoxScore
98 - 2023-01-03721Barracuda7Marlies1LBoxScore
100 - 2023-01-05732Marlies3Barracuda5LBoxScore
102 - 2023-01-07747Marlies3Bears5LBoxScore
104 - 2023-01-09763Bears8Marlies3LBoxScore
106 - 2023-01-11777Marlies0Stars3LBoxScore
108 - 2023-01-13791Moose6Marlies3LBoxScore
111 - 2023-01-16816IceHogs4Marlies2LBoxScore
113 - 2023-01-18827Marlies0Senators7LBoxScore
116 - 2023-01-21848Marlies1Bruins7LBoxScore
117 - 2023-01-22857Wolves10Marlies1LBoxScore
120 - 2023-01-25878Senators6Marlies0LBoxScore
122 - 2023-01-27892Marlies3Sound Tigers7LBoxScore
124 - 2023-01-29911Penguins4Marlies1LBoxScore
126 - 2023-01-31925Marlies1Rampage10LBoxScore
129 - 2023-02-03946Condors6Marlies4LBoxScore
130 - 2023-02-04957Marlies2Condors3LBoxScore
133 - 2023-02-07975Monsters8Marlies0LBoxScore
135 - 2023-02-09988Marlies2Rocket5LBoxScore
137 - 2023-02-111008Stars8Marlies0LBoxScore
138 - 2023-02-121019Marlies4IceHogs6LBoxScore
141 - 2023-02-151036Marlies0Griffins9LBoxScore
143 - 2023-02-171050Thunderbirds5Marlies7WBoxScore
144 - 2023-02-181057Marlies4Firebirds5LBoxScore
149 - 2023-02-231084Checkers3Marlies0LBoxScore
152 - 2023-02-261109Reign2Marlies3WBoxScore
155 - 2023-03-011124Marlies3Wolves9LBoxScore
158 - 2023-03-041140Griffins4Marlies0LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance68,32734,206
Attendance PCT94.90%95.02%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2848 - 94.94% 71,000$2,555,990$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
179,853$ 75,857$ 0$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 79,810$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 1,092$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
128296802201170454-284416320020191224-133413360200079230-15125170331501100665646205607066706653666101877514753924711.99%32110268.22%2686199834.33%901284931.63%399135529.45%12418242800620894352
137646801300118417-299381360010060210-150383320120058207-149131182303480004635361763058060157932578756461275323309.29%2617172.80%1527180329.23%702254627.57%326121126.92%10506852692580827303
147646900210123440-317382330021060216-156382360000063224-1611212323435700047413416430544519576364410207131260277248.66%3037475.58%4415171824.16%676273224.74%310120525.73%9916362786561791289
1582323106625200180204116140432211093174116170230390873912003445443100796152210206797046832258656118916183866216.06%4655787.74%21152244447.14%1147266243.09%553115148.05%200514162016580959478
1682214802443164253-8941161801312100121-21415300113164132-686116426242624065534018580601621614279179294216653626417.68%3746981.55%0659210131.37%889295330.10%357113731.40%166311552399579903416
177276202001141423-282365290100175210-135362330100066213-14719141273414105745372188068255863013328791958813262553413.33%2567371.48%1574175332.74%743250329.68%360116930.80%11087422454518768307
Total Regular Season47077346013177109162167-1251235461620611464961074-57823531184076344201093-67322191616742590714573482832101130268236683745313018903528048538619199526113.08%198044677.47%1040131181733.96%50581624531.14%2305722831.89%8061546215149344051452149