Moose

GP: 70 | W: 41 | L: 24 | OTL: 5 | P: 87
GF: 338 | GA: 239 | PP%: 28.62% | PK%: 78.69%
GM : Luc Forget | Morale : 50 | Team Overall : 63
Next Games #1125 vs Stars

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Trent Frederic0X100.007582746686798663706567646665697650660
2Vinni Lettieri0X100.006838856769917965776668616469703650650
3Ryan Lomberg0X100.008078667067788665596165666369703650650
4Isaac Ratcliffe0X100.008044686192778159606557625864667450630
5Justin Kirkland0X100.006939735880777959785859626067695750610
6Lukas Svejkovsky0X100.006335955663816855605853525462646150570
7Garrett Mitchell0X100.006344635272657751535251545172773050560
8Riley Sawchuk0X100.006036955369716352615356515464664350550
9Pierre-Olivier Joseph0X100.006835807477888667307361575363657950670
10Matthew Kessel0X100.006841746081847659306058624963654950630
11Matthew Robertson0X100.007841815687748355305853594662647350620
Scratches
1Dylan Holloway0X100.007139846378797762576066596462638450630
2Daniel Torgersson0X100.007439945883807357585561605961637550610
3Noel Gunler0X100.006738905976896761625960586062647450610
4Isaak Phillips0X100.007343736284838558306659635062645650650
5Tyler Tucker0X100.007247616278828663306559625063654950650
6Declan Chisholm0X100.006338896278798157306453584863654950620
7Olli Juolevi0X100.006639846377767059306052574765678550610
TEAM AVERAGE100.00704479617880785950615959556466605062
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
1Mack Guzda100.00716465927069717069717062674450690
2Devin Cooley100.00706364886968706968706966754250690
TEAM AVERAGE100.0071646590706971706971706471435069
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Rick Tocchet84768981898357CAN5991,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Trent FredericMoose (Wpg)C70465298665915651512728520716.91%17104214.89561122670001505370.64%132500031.8823021794
2Ryan LombergMoose (Wpg)LW70395796669201511303018323412.96%19103714.83381116670004436160.24%8300031.85220001237
3Matthew KesselMoose (Wpg)D70305686459810162651634811218.40%76132218.902315381051570001173300.00%000001.3000001378
4Tyler TuckerMoose (Wpg)D5221517241001020574144479414.58%68122123.48122133921730001194300.00%000101.1800110563
5Vinni LettieriMoose (Wpg)C703425593610016872133812215.96%106569.38112590001282172.42%70700031.8011000424
6Noel GunlerMoose (Wpg)RW5715344948802140136449411.03%1080314.102791162000003059.02%6100001.2200000041
7Isaak PhillipsMoose (Wpg)D3215274212320683884335517.86%2976723.98111425581080002134410.00%000011.0900000211
8Isaac RatcliffeMoose (Wpg)LW70132740338210986015629948.33%55978.5401102000011163.16%3800001.3400001102
9Declan ChisholmMoose (Wpg)D44732391826054327633609.21%4493821.3362228611320001191000.00%000000.8300000033
10Matthew RobertsonMoose (Wpg)D707303734106101684467172310.45%5692513.221231010000179110.00%000000.8000002111
11Lukas SvejkovskyMoose (Wpg)RW70111829336041468166216.18%46028.6000000000001062.50%4800000.9600000003
12Daniel TorgerssonMoose (Wpg)LW20141428153005221105207213.33%338119.0667132171000000064.52%3100011.4700000112
13Justin KirklandMoose (Wpg)C701018282480153663165515.87%32393.4300000000001073.54%29100002.3411000033
14Dylan HollowayMoose (Wpg)LW6714142821140162074236418.92%42413.6000000000000158.33%2400002.3201000002
15Olli JuoleviMoose (Wpg)D3211617211802422133127.69%1844814.0101103000014000.00%000000.7600000020
16Morgan BarronWinnipeg JetsC/LW/RW86915132017264264414.29%517922.490223250002402075.43%23200011.6700000210
17Jimmy VeseyWinnipeg JetsLW/RW5771410405123963017.95%211222.4421310210000220081.82%1100002.5000000201
18Garrett MitchellMoose (Wpg)RW70410142410013733102512.12%22393.4200000000000063.16%1900001.1700000110
Team Total or Average9472944977915237055511548792049557145914.35%3751175712.42721081804149150001497632970.80%2870001121.3568135414445
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Mack GuzdaMoose (Wpg)1511130.9111.9290721293250000.0002150001
2Devin CooleyMoose (Wpg)128400.9132.1771802262990400.00001227010
Team Total or Average2719530.9122.03162623556240400.00022727011


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Daniel TorgerssonLW222002-01-26No199 Lbs6 ft3NoNoNo4ELCPro & Farm500,000$0$0$NoLink / NHL Link
Declan ChisholmD242000-01-12No185 Lbs6 ft1NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Devin CooleyG261997-05-25No192 Lbs6 ft5NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Dylan HollowayLW222001-09-23No203 Lbs6 ft1NoNoNo3ELCPro & Farm900,000$0$0$NoLink / NHL Link
Garrett MitchellRW321991-09-02No198 Lbs5 ft11NoNoNo2UFAPro & Farm300,000$0$0$NoLink / NHL Link
Isaac RatcliffeLW251999-02-15No200 Lbs6 ft6NoNoNo1RFAPro & Farm500,000$0$0$NoLink / NHL Link
Isaak PhillipsD222001-09-28No205 Lbs6 ft3NoNoNo3ELCPro & Farm300,000$0$0$NoLink / NHL Link
Justin KirklandC271996-08-02No183 Lbs6 ft3NoNoNo4RFAPro & Farm300,000$0$0$NoLink / NHL Link
Lukas SvejkovskyRW222001-11-28No165 Lbs5 ft10NoNoNo4ELCPro & Farm300,000$0$0$NoLink / NHL Link
Mack GuzdaG232001-01-11No215 Lbs6 ft5NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Matthew KesselD232000-06-23No205 Lbs6 ft2NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Matthew RobertsonD222001-09-01No201 Lbs6 ft4NoNoNo3ELCPro & Farm500,000$0$0$NoLink / NHL Link
Noel GunlerRW222001-10-07No176 Lbs6 ft2NoNoNo3ELCPro & Farm900,000$0$0$NoLink / NHL Link
Olli JuoleviD251998-05-05No182 Lbs6 ft2NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Pierre-Olivier JosephD241999-07-01No185 Lbs6 ft2NoNoNo1RFAPro & Farm500,000$0$0$NoLink / NHL Link
Riley SawchukC251999-03-18No181 Lbs5 ft11NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Ryan LombergLW291994-12-09No187 Lbs5 ft9NoNoNo3UFAPro & Farm500,000$0$0$NoLink / NHL Link
Trent FredericC261998-02-11No214 Lbs6 ft3NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Tyler TuckerD242000-03-01No204 Lbs6 ft1NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Vinni LettieriC291995-02-06No184 Lbs5 ft10NoNoNo1UFAPro & Farm1,000,000$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2024.70193 Lbs6 ft22.30445,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Ryan LombergTrent Frederic30122
3Isaac RatcliffeVinni LettieriLukas Svejkovsky20122
4Justin KirklandGarrett Mitchell10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Matthew Kessel30122
3Matthew Robertson20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Ryan LombergTrent Frederic40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Matthew Kessel40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Trent FredericRyan Lomberg40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Matthew Kessel40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
2Trent Frederic40122Matthew Kessel40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Trent FredericRyan Lomberg40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Matthew Kessel40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
Vinni Lettieri, Isaac Ratcliffe, Vinni Lettieri, Isaac RatcliffeVinni Lettieri
Extra Defensemen
Normal PowerPlayPenalty Kill
, Matthew Robertson, , Matthew Robertson
Penalty Shots
, , Trent Frederic, Ryan Lomberg, Vinni Lettieri
Goalie
#1 : , #2 :
Custom OT Lines Forwards
, , , , , , , , , ,
Custom OT Lines Defensemen
, , , ,


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
7087L133860494227251962541819148703
All Games
GPWLOTWOTL SOWSOLGFGA
7037242421338239
Home Games
GPWLOTWOTL SOWSOLGFGA
3621130200176127
Visitor Games
GPWLOTWOTL SOWSOLGFGA
3416112221162112
Last 10 Games
WLOTWOTL SOWSOL
620020
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3189128.62%3667878.69%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
86695687638141107868
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1287228256.40%984191451.41%684116058.97%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
196214861496423768407


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
4 - 2023-08-137Wranglers1Moose4WBoxScore
6 - 2023-08-1526Wranglers0Moose8WBoxScore
11 - 2023-08-2039Wild2Moose8WBoxScore
12 - 2023-08-2151Wild1Moose6WBoxScore
18 - 2023-08-2782Moose6Stars1WBoxScore
19 - 2023-08-2896Moose5Stars3WBoxScore
26 - 2023-09-04123IceHogs1Moose6WBoxScore
27 - 2023-09-05140IceHogs1Moose6WBoxScore
34 - 2023-09-12175Rocket4Moose1LBoxScore
35 - 2023-09-13181Rocket3Moose2LXBoxScore
39 - 2023-09-17194Moose3Senators4LXBoxScore
40 - 2023-09-18205Moose4Marlies1WBoxScore
41 - 2023-09-19219Moose8Marlies1WBoxScore
44 - 2023-09-22236Moose6IceHogs1WBoxScore
46 - 2023-09-24241Moose5Griffins6LXXBoxScore
48 - 2023-09-26267Moose2Griffins3LBoxScore
53 - 2023-10-01283IceHogs0Moose8WBoxScore
55 - 2023-10-03305IceHogs1Moose9WBoxScore
60 - 2023-10-08325Moose8Wranglers2WBoxScore
62 - 2023-10-10345Moose5Wranglers0WBoxScore
67 - 2023-10-15365Admirals4Moose5WBoxScore
69 - 2023-10-17382Admirals3Moose0LBoxScore
71 - 2023-10-19387Moose6Wolves1WBoxScore
74 - 2023-10-22410Moose4Wild2WBoxScore
75 - 2023-10-23419Moose10Wild2WBoxScore
81 - 2023-10-29445Stars4Moose3LBoxScore
83 - 2023-10-31463Stars4Moose3LBoxScore
89 - 2023-11-06487Senators6Moose4LBoxScore
90 - 2023-11-07505Senators8Moose5LBoxScore
93 - 2023-11-10512Moose5Senators4WXBoxScore
95 - 2023-11-12521Moose1Rocket4LBoxScore
96 - 2023-11-13531Moose4Rocket6LBoxScore
102 - 2023-11-19569Griffins7Moose1LBoxScore
103 - 2023-11-20581Griffins3Moose0LBoxScore
106 - 2023-11-23596Wolves4Moose7WBoxScore
107 - 2023-11-24603Wolves3Moose5WBoxScore
110 - 2023-11-27632Moose5IceHogs4WXBoxScore
111 - 2023-11-28639Moose3Wolves4LBoxScore
113 - 2023-11-30642Moose4IceHogs1WBoxScore
116 - 2023-12-03660Moose6Admirals8LBoxScore
117 - 2023-12-04676Moose7IceHogs2WBoxScore
123 - 2023-12-10688Moose0Griffins4LBoxScore
124 - 2023-12-11703Moose3Griffins7LBoxScore
127 - 2023-12-14715Moose3Wranglers5LBoxScore
128 - 2023-12-15721Moose4Wranglers5LXBoxScore
131 - 2023-12-18733Admirals6Moose5LXBoxScore
133 - 2023-12-20757Admirals5Moose6WBoxScore
137 - 2023-12-24776Wranglers3Moose6WBoxScore
138 - 2023-12-25789Wranglers2Moose6WBoxScore
145 - 2024-01-01830Stars1Moose5WBoxScore
146 - 2024-01-02842Stars6Moose5LBoxScore
149 - 2024-01-05852Moose4Admirals3WBoxScore
152 - 2024-01-08877Moose4Wild5LBoxScore
153 - 2024-01-09887Moose7Wild2WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
156 - 2024-01-12895Moose3Admirals6LBoxScore
158 - 2024-01-14911Moose8Wolves1WBoxScore
159 - 2024-01-15922Moose5Wolves1WBoxScore
162 - 2024-01-18938Griffins5Moose2LBoxScore
163 - 2024-01-19944Griffins6Moose1LBoxScore
166 - 2024-01-22960Canucks8Moose4LBoxScore
167 - 2024-01-23974Canucks10Moose5LBoxScore
170 - 2024-01-26990Marlies4Moose6WBoxScore
172 - 2024-01-28994Marlies3Moose4WBoxScore
176 - 2024-02-011026Moose5Canucks4WXXBoxScore
177 - 2024-02-021035Moose5Canucks4WXXBoxScore
180 - 2024-02-051045Wolves2Moose9WBoxScore
181 - 2024-02-061062Wolves1Moose8WBoxScore
187 - 2024-02-121089Wild4Moose6WBoxScore
188 - 2024-02-131103Wild1Moose7WBoxScore
191 - 2024-02-161113Moose4Admirals5LBoxScore
193 - 2024-02-181125Moose-Stars-
194 - 2024-02-191139Moose-Stars-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance68,47933,922
Attendance PCT95.11%94.23%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2844 - 94.82% 71,026$2,556,928$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,067,909$ 89,000$ 0$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 88,391$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 4 5,585$ 22,340$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
1282214702525214288-7441102401312106138-3241112301213108150-4260214349563210678162202706247026812208680125617914808718.13%5149781.13%21058238944.29%900222140.52%637124951.00%208514841931562955492
1282214702525214288-7441102401312106138-3241112301213108150-4260214349563210678162202706247026812208680125617914808718.13%5149781.13%21058238944.29%900222140.52%637124951.00%208514841931562955492
1376155105212172342-170388250400187165-78387260121185177-924617231348501064465618320609630572284685388614313565014.04%3788178.57%6827195142.39%1011256239.46%417111737.33%14169672329557842366
1376155105212172342-170388250400187165-78387260121185177-924617231348501064465618320609630572284685388614313565014.04%3788178.57%6827195142.39%1011256239.46%417111737.33%14169672329557842366
147666402211157387-230384320110077178-101382320111180209-1292115728544210071483519160633631642316889972113802573513.62%3287577.13%0601188131.95%727247429.39%361119730.16%13088852424544845352
147666402211157387-230384320110077178-101382320111180209-1292115728544210071483519160633631642316889972113802573513.62%3287577.13%0601188131.95%727247429.39%361119730.16%13088852424544845352
158237800001104488-384411400000046236-190412380000158252-194710420330700041352816490564553530427411928101338307165.21%3469971.39%0550183829.92%795302226.31%315124025.40%10576763032584835306
158237800001104488-384411400000046236-190412380000158252-194710420330700041352816490564553530427411928101338307165.21%3469971.39%0550183829.92%795302226.31%315124025.40%10576763032584835306
168207801210120503-383410390110064242-178410390011056261-205612023335310053402517600568602585406111027351333277279.75%3058671.80%0561178231.48%800287427.84%387134028.88%10336583054585845310
168207801210120503-383410390110064242-178410390011056261-205612023335310053402517600568602585406111027351333277279.75%3058671.80%0561178231.48%800287427.84%387134028.88%10336583054585845310
17725012061302771411363624702120145727336265040101326963119277497774010097799223870780802791162754594414563666317.21%3865087.05%71274231455.06%1024199851.25%585106055.19%203315071483469829443
17725012061302771411363624702120145727336265040101326963119277497774010097799223870780802791162754594414563666317.21%3865087.05%71274231455.06%1024199851.25%585106055.19%203315071483469829443
187037240242133823999362113002001761274934161102221162112508733860494203141107868272586695687638196254181914873189128.62%3667878.69%01287228256.40%984191451.41%684116058.97%196214861496423768407
Total Regular Season101022768403428181924264537-2111506115347018146612262189-96350411233701614121312002348-11486052426436467908271418937446042586786685128716764038330110831152318945440464714.69%4880105478.40%30110292659241.47%114983221635.69%60881556639.11%1983113844300117030110734952
Playoff
11514000001120-92110000067-130300000513-821120310006321200444036132311131004249.52%451077.78%08916852.98%7214948.32%378145.68%11577125385928
11514000001120-92110000067-130300000513-821120310006321200444036132311131004249.52%451077.78%08916852.98%7214948.32%378145.68%11577125385928
Total Playoff1028000002240-18422000001214-2606000001026-16422406200012642400888072264622262008489.52%902077.78%017833652.98%14429848.32%7416245.68%2301552517711856