Wild

GP: 72 | W: 31 | L: 37 | OTL: 4 | P: 66
GF: 265 | GA: 258 | PP%: 19.07% | PK%: 74.47%
GM : Kevin Bourassa | Morale : 50 | Team Overall : 64

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Joe VelenoX100.007638896779839566826465686762647850670
2Sasha ChmelevskiX100.006638896572878565736758636564674950640
3Aleksi HeponiemiX100.005837896662798065716659616764667550630
4Alexander HoltzX100.006237916773917865566364576661628950630
5Gemel SmithX100.007271746371847562806659645867705250630
6Adam BrooksX100.005934956870747367795466596865676050620
7Tanner LaczynskiX100.006937946175876659746058636165674750620
8Mackenzie MacEachernX100.007341845779778658635960576168705550610
9William LockwoodX100.008238765967798157635859625964666550610
10Michael Del ZottoX100.007838916873888164307365665478745050680
11Sebastien AhoX100.006234857569867770307363605465665450660
12Lassi ThomsonX100.006439816672858263306756605162648350640
13Chase PriskieX100.006437846172837757306058625166685650630
14Jeremy DaviesX100.006139836168827762306758615066684750630
15Filip BerglundX100.007631775385648152305350534565676150590
Scratches
1Victor MeteX100.005633847366867867307155725065645950670
TEAM AVERAGE100.00673985647282806253646062586567615064
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Cory Schneider100.00747172827372747372747381904750730
2Jakub Skarek100.00697475836867696867696863696550680
3Garrett Metcalf100.00656366776463656463656468754750650
Scratches
1Samuel Ersson (R)100.00646766766362646362646365695550640
TEAM AVERAGE100.0068697080676668676668676976545068
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Joel Bouchard71686965746978CAN4821,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Sebastien AhoWild (Min)D67108595191020130106167541215.99%94168125.09922311162960551228100.00%000001.1300000526
2Joe VelenoWild (Min)C7248429012681012221033110623014.50%57172423.951415297527900092634365.68%202800021.04001011141
3Rasmus KupariMinnesota WildC723043737395651212517018311.95%23147620.50518234525320272535263.72%125400010.9900001245
4Alexander HoltzWild (Min)RW67294170819525852335716112.45%10132419.776172357280000003052.27%8800011.0600001253
5Gemel SmithWild (Min)C7230316156420104972084913014.42%24140519.52811195425910131333070.00%15000000.8700121154
6Mackenzie MacEachernWild (Min)LW722233551380208957140357715.71%14133818.597815302690002402060.98%8200000.8200202133
7Sasha ChmelevskiWild (Min)C6720294965610921341654012412.12%13108816.240000011231324062.68%96200010.9000011253
8Lassi ThomsonWild (Min)D6773643-172096569236467.61%62139620.8451318632280000194100.00%000000.6200000000
9Aleksi HeponiemiWild (Min)C67202040517549971423810514.08%10109516.340000810161400068.35%15800010.7300100532
10William LockwoodWild (Min)RW671720374780146461403810812.14%20114117.04771435258000000163.89%7200000.6500000012
11Jeremy DaviesWild (Min)D6772936-17410715168324010.29%51132719.8151318372250001151000.00%000000.5400001021
12Adam BrooksWild (Min)C6713223551404053150531218.67%696714.44000214000003077.08%4800000.7200000202
13Chase PriskieWild (Min)D6732225416039435110195.88%5389513.37000826000018100.00%000000.5600000111
14Filip BerglundWild (Min)D6718947201221313787.69%3892513.810000000008200100.00%100000.1900000100
15Tanner LaczynskiWild (Min)C72325-20020153610198.33%62072.881017320001213055.07%6900000.4800000020
16Victor MeteWild (Min)D21010401471614.29%24824.2110161100015100.00%000000.4100000000
Team Total or Average10322614637248877585121111882194636149811.90%4831804217.48681241925352445561134166531664.43%491200060.8000538333733
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Team Total or Average0.0000.0000.000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam BrooksC261996-05-06No179 Lbs6 ft0NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Aleksi HeponiemiC241999-01-09No155 Lbs5 ft10NoNoNo2RFAPro & Farm900,000$0$0$NoLink / NHL Link
Alexander HoltzRW212002-01-23No195 Lbs6 ft0NoNoNo4ELCPro & Farm900,000$0$0$NoLink
Chase PriskieD261996-03-19No185 Lbs6 ft0NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Cory SchneiderG361986-03-18No210 Lbs6 ft2NoNoNo2UFAPro & Farm500,000$0$0$NoLink / NHL Link
Filip BerglundD251997-05-10No206 Lbs6 ft3NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Garrett MetcalfG261996-03-05No185 Lbs6 ft2NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Gemel SmithC281994-04-16No203 Lbs5 ft10NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Jakub SkarekG231999-11-10No196 Lbs6 ft3NoNoNo2RFAPro & Farm500,000$0$0$NoLink / NHL Link
Jeremy DaviesD261996-12-04No180 Lbs5 ft11NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Joe VelenoC232000-01-13No206 Lbs6 ft1NoNoNo2RFAPro & Farm900,000$0$0$NoLink / NHL Link
Lassi ThomsonD222000-09-24No190 Lbs6 ft0NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Mackenzie MacEachernLW281994-03-09No193 Lbs6 ft2NoNoNo3UFAPro & Farm500,000$0$0$NoLink / NHL Link
Michael Del ZottoD321990-06-24No195 Lbs6 ft0NoNoNo3UFAPro & Farm1,374,977$0$0$NoLink / NHL Link
Samuel ErssonG231999-10-20Yes176 Lbs6 ft2NoNoNo4RFAPro & Farm500,000$0$0$No
Sasha ChmelevskiC231999-06-09No188 Lbs6 ft0NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Sebastien AhoD271996-02-17No184 Lbs5 ft11NoNoNo3RFAPro & Farm500,000$0$0$NoLink / NHL Link
Tanner LaczynskiC251997-06-01No190 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Victor MeteD241998-06-07No185 Lbs5 ft9NoNoNo2RFAPro & Farm1,000,000$0$0$NoLink / NHL Link
William LockwoodRW241998-06-20No172 Lbs5 ft11NoNoNo3RFAPro & Farm300,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2025.60189 Lbs6 ft02.40568,749$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Mackenzie MacEachernJoe VelenoAlexander Holtz40122
2Gemel SmithWilliam Lockwood30122
3Adam BrooksSasha ChmelevskiAleksi Heponiemi20122
4Joe VelenoGemel Smith10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Sebastien Aho40122
2Lassi ThomsonJeremy Davies30122
3Chase PriskieFilip Berglund20122
4Sebastien Aho10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Mackenzie MacEachernJoe VelenoAlexander Holtz60122
2Gemel SmithWilliam Lockwood40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Sebastien Aho60122
2Lassi ThomsonJeremy Davies40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Joe Veleno60122
2Sasha ChmelevskiGemel Smith40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Sebastien Aho60122
2Lassi ThomsonJeremy Davies40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Joe Veleno60122Sebastien Aho60122
240122Lassi ThomsonJeremy Davies40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Joe Veleno60122
2Sasha ChmelevskiGemel Smith40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Sebastien Aho60122
2Lassi ThomsonJeremy Davies40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Mackenzie MacEachernJoe VelenoAlexander HoltzSebastien Aho
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Mackenzie MacEachernJoe VelenoAlexander HoltzSebastien Aho
Extra Forwards
Normal PowerPlayPenalty Kill
Tanner Laczynski, Adam Brooks, Aleksi HeponiemiTanner Laczynski, Adam BrooksAleksi Heponiemi
Extra Defensemen
Normal PowerPlayPenalty Kill
Chase Priskie, Filip Berglund, Lassi ThomsonChase PriskieFilip Berglund, Lassi Thomson
Penalty Shots
Joe Veleno, , Sasha Chmelevski, Gemel Smith, Alexander Holtz
Goalie
#1 : , #2 :
Custom OT Lines Forwards
, , , , , , , , , ,
Custom OT Lines Defensemen
, , , ,


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
7266L426549075522681837533817127115
All Games
GPWLOTWOTL SOWSOLGFGA
7228373400265258
Home Games
GPWLOTWOTL SOWSOLGFGA
3615192000138117
Visitor Games
GPWLOTWOTL SOWSOLGFGA
3613181400127141
Last 10 Games
WLOTWOTL SOWSOL
540100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3677019.07%3298474.47%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
7777367451010983703
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1474227364.85%1036170160.91%715113463.05%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
199614851510455821437


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2022-09-2910Wild7Firebirds2WBoxScore
4 - 2022-10-0126Monsters5Wild2LBoxScore
5 - 2022-10-0236Wild1Wolf Pack4LBoxScore
7 - 2022-10-0449Rampage4Wild1LBoxScore
9 - 2022-10-0660Wild6Gulls5WXBoxScore
12 - 2022-10-0982Wolves1Wild3WBoxScore
14 - 2022-10-1197Wild8Reign3WBoxScore
16 - 2022-10-13114Monsters3Wild2LBoxScore
18 - 2022-10-15131Wild0Penguins7LBoxScore
20 - 2022-10-17140Wild3Moose4LBoxScore
22 - 2022-10-19160Firebirds2Wild3WBoxScore
23 - 2022-10-20172Wild4Firebirds3WBoxScore
26 - 2022-10-23186Wild3Stars1WBoxScore
27 - 2022-10-24192Monsters3Wild4WBoxScore
30 - 2022-10-27219Rocket3Wild2LBoxScore
32 - 2022-10-29235Wild0Wolves7LBoxScore
34 - 2022-10-31249Condors0Wild7WBoxScore
37 - 2022-11-03265Wild1Eagles5LBoxScore
39 - 2022-11-05283Wild2Barracuda4LBoxScore
40 - 2022-11-06288Rampage4Wild3LBoxScore
43 - 2022-11-09312Thunderbirds1Wild6WBoxScore
46 - 2022-11-12332Wild2Wolf Pack3LBoxScore
47 - 2022-11-13346Devils5Wild0LBoxScore
51 - 2022-11-17370Wild1Rocket4LBoxScore
53 - 2022-11-19384Wranglers3Wild1LBoxScore
55 - 2022-11-21400Wild7IceHogs2WBoxScore
57 - 2022-11-23413Crunch3Wild1LBoxScore
60 - 2022-11-26436Barracuda3Wild4WXBoxScore
62 - 2022-11-28450Wild3Phantoms4LXBoxScore
64 - 2022-11-30466Wild7Gulls5WBoxScore
66 - 2022-12-02477Marlies0Wild8WBoxScore
69 - 2022-12-05497IceHogs3Wild7WBoxScore
71 - 2022-12-07519Griffins5Wild3LBoxScore
73 - 2022-12-09535Wild4Bruins8LBoxScore
76 - 2022-12-12554Wild1Senators2LBoxScore
78 - 2022-12-14565Checkers5Wild0LBoxScore
81 - 2022-12-17589Wild2Monsters5LBoxScore
82 - 2022-12-18599Comets5Wild3LBoxScore
85 - 2022-12-21622Americans4Wild2LBoxScore
88 - 2022-12-24645Senators6Wild2LBoxScore
90 - 2022-12-26658Wild1Griffins5LBoxScore
92 - 2022-12-28676Wolf Pack3Wild2LBoxScore
94 - 2022-12-30691Wild4Roadrunners2WBoxScore
96 - 2023-01-01701Wild7Marlies0WBoxScore
98 - 2023-01-03719Penguins5Wild2LBoxScore
100 - 2023-01-05737Wild7Firebirds3WBoxScore
102 - 2023-01-07749Bruins6Wild3LBoxScore
105 - 2023-01-10774Eagles4Wild5WBoxScore
108 - 2023-01-13789Wild5Bears3WBoxScore
110 - 2023-01-15805Wild4Condors2WBoxScore
111 - 2023-01-16814Firebirds1Wild3WBoxScore
114 - 2023-01-19830Wild2Rampage4LBoxScore
116 - 2023-01-21844Moose6Wild4LBoxScore
119 - 2023-01-24871Wild5Thunderbirds4WBoxScore
120 - 2023-01-25877Roadrunners0Wild9WBoxScore
123 - 2023-01-28901Wild2Comets3LXBoxScore
124 - 2023-01-29908Sound Tigers5Wild3LBoxScore
126 - 2023-01-31929Wild3Wranglers4LXBoxScore
129 - 2023-02-03942Stars3Wild4WXBoxScore
131 - 2023-02-05958Wild2Devils4LBoxScore
132 - 2023-02-06971Wild5Crunch7LBoxScore
134 - 2023-02-08983Bears4Wild6WBoxScore
137 - 2023-02-111007Phantoms3Wild5WBoxScore
140 - 2023-02-141031Reign0Wild9WBoxScore
141 - 2023-02-151037Wild10Admirals2WBoxScore
145 - 2023-02-191062Admirals3Wild8WBoxScore
149 - 2023-02-231090Gulls1Wild7WBoxScore
150 - 2023-02-241095Wild4Reign5LXBoxScore
152 - 2023-02-261114Wild2Sound Tigers7LBoxScore
156 - 2023-03-021127Wolves5Wild4LBoxScore
157 - 2023-03-031135Wild1Checkers4LBoxScore
158 - 2023-03-041142Wild1Americans4LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance67,93233,754
Attendance PCT94.35%93.76%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2825 - 94.15% 70,496$2,537,858$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,106,721$ 113,750$ 0$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 106,738$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 6,918$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
1282274403503283342-5941172001201155164-941102402302128178-5068283485768000134935325470878813828258975199516404688117.31%3859874.55%21145242947.14%936227041.23%630134146.98%190913962140555907437
1376283605502265285-2038191303300155134213892302202110151-4173265442707320106718323830800766804202860092614384438619.41%4059975.56%11127240446.88%784193640.50%570123246.27%199614881740490842429
1476431902444242128114382012010321316764382370141211161501062424426840170102765821930727743705161347471113063628523.48%2823189.01%51338240055.75%1049207750.51%602102858.56%216415871534492907490
1582224805331236329-9341102503120123165-4241122302211113164-516423637561105094874725330880848783306387980614544105713.90%3388076.33%11095243644.95%1107268841.18%557129443.04%169812252374570892402
1682363404431301249524118150412114611630411819003101551332291301526827020116898926250847866895207657888214434307818.14%3726682.26%61497266856.11%1139213853.27%702125156.12%213915801884539924470
17722837034002652587361519020001381172136131801400127141-14662654907551510983703226877773674510183753381712713677019.07%3298474.47%51474227364.85%1036170160.91%715113463.05%199614851510455821437
Total Regular Season470184218022251011159215911235991040147748487638523585114081837744828-844681592276043524311096354863331454977748684781402513206381551378552248045718.43%211145878.30%2076761461052.54%60511281047.24%3776728051.87%11905876311185310552962668
Playoff
11221480000048399127500000282531073000002014628488613403012161951501821561664421293535412142310.75%1561590.38%134574546.31%36973250.41%14328250.71%583397508177277145
1340400000921-122020000049-520200000512-709132200042393030333012741526622627.27%24579.17%04311039.09%3611431.58%246636.36%8863109264219
14251510000004142-11376000002022-2128400000212013041751161405141852801641571506722022694371181210.17%1111388.29%136676647.78%43889149.16%15833147.73%623419694207339167
Total Playoff5129220000098102-4271413000005256-4241590000046460589817427217021324011360376346346124137267410443544111.58%2913388.66%2754162146.51%843173748.53%32567947.86%12958801312411659332