Bears

GP: 22 | W: 15 | L: 5 | OTL: 2 | P: 32
GF: 79 | GA: 48 | PP%: 19.09% | PK%: 82.24%
GM : Mathieu Girard | Morale : 50 | Team Overall : 63
Next Games #304 vs Penguins

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Hendrix Lapierre0X100.006337937270808567767161636864658150660
2Anthony Richard0XX100.006538837068878367696566636769715050660
3Mavrik Bourque0X100.006237927170928767776864656663657850660
4Ethan Cardwell0X100.006637796568908664676362656164655850640
5Nicolas Aube-Kubel0XX100.007862856677788064596162636271705850640
6Ben Meyers0XX100.006736916371858264716263616067693750630
7Reese Johnson0XX100.007965746276777861646059665867693750630
8Tim Gettinger0XX100.008751905896778059565857625967694750630
9Nikita Nesterenko0XX100.007239836379788762666064616365664850630
10Anton Blidh0XX100.007042656177768560565958625770723950620
11Gage Quinney0XX100.006336956272847659706657605870723550620
12Curtis Douglas0X100.009082515799758255645756635665675850620
13Ryder Rolston0XXX100.006337955972828357605958565764665550600
14Navrin Mutter0X100.007261505581697153575452565364664350570
15Braeden Kressler0X100.005738755563816153615450525562644350550
16Christoffer Sedoff0X100.006939855778678055305653584663654250600
17Ethan Frisch0X100.005838825671668254305553564565674250590
18Leo Loof0X100.006641755476618353305750554563656350580
19Marshall Warren0X100.005637785566726954305653574664664850580
Scratches
1Joe Snively0X90.975636896365808762666158576169713650610
2Ben Harpur0X93.129056655899686657305653634670724850640
TEAM AVERAGE99.19694580617677805957605860576668505062
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Chris Driedger100.00758378887473757473757471855150750
2Henrik Tikkanen100.00708076986968706968706965734750710
Scratches
TEAM AVERAGE100.0073827793727173727173726879495073
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jay Leach68696465696480USA4671,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Anthony RichardBears (Was)C/LW22141529141202940111468412.61%1251623.4963937900224973158.18%5500001.1211000342
2Nicolas Aube-KubelBears (Was)C/RW229192811355443610023709.00%435716.2328103791000000158.06%3100001.5700001214
3Reese JohnsonBears (Was)C/RW22138214335663877255216.88%638717.6354931820000202158.60%15700001.0800100303
4Ethan CardwellBears (Was)RW221010201160244769176014.49%539017.7710158000003151.83%16400001.0211000142
5Gage QuinneyBears (Was)C/LW225813104093549142710.20%329413.3810124000031060.82%26800000.8800000101
6Christoffer SedoffBears (Was)D2221012173553724236148.70%1541919.0820214360000270039.19%7400000.5700100001
7Ryder RolstonBears (Was)C/LW/RW224812812021395229317.69%537717.1500001000001053.09%24300000.6400000011
8Ethan FrischBears (Was)D22191016802271021010.00%1338917.68134439011142100.00%000000.5100000110
9Joe SnivelyBears (Was)LW1945914011254519338.89%422011.5900000000001046.67%1500000.8200000001
10Nikita NesterenkoBears (Was)C/LW11459112012133092513.33%522220.190118270000230058.42%10100010.8100000101
11Brandt ClarkeWashington CapitalsD5077500289470.00%710521.11011722000011000.00%000001.3300000010
12Marshall WarrenBears (Was)D22145610021612288.33%1134815.8500002000060018.75%1600000.2900000010
13Hendrix LapierreBears (Was)C21343000163516.67%02110.8801126000000072.41%2900003.6800000000
14Leo LoofBears (Was)D2222432810361192522.22%1732414.7400016101128000.00%000000.2500101010
15Tim GettingerBears (Was)LW/RW6213380871131118.18%07813.0800000000050085.71%700000.7600000000
16Anton BlidhBears (Was)LW/RW811226013512278.33%110913.6600000000000028.57%700000.3700000000
17Ben HarpurBears (Was)D10112823535511379.09%1620920.92101635000134100.00%000000.1900100100
Team Total or Average281741161901332263039034763620945611.64%124477216.99192140154455134730313455.36%116700010.8022402131416
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Henrik TikkanenBears (Was)149310.9132.3379981313570000.66731422220
2Chris DriedgerBears (Was)85210.9112.0047901161800000.000080010
Team Total or Average2214520.9122.21127882475370000.66732222230


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Anthony RichardC/LW281996-12-20No185 Lbs5 ft10NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Anton BlidhLW/RW301995-03-14No196 Lbs6 ft1NoNoNo2UFAPro & Farm300,000$0$0$NoLink / NHL Link
Ben Harpur (Out of Payroll)D301995-01-12No231 Lbs6 ft6NoNoNo2UFAPro & Farm400,000$0$0$YesLink
Ben MeyersC/LW271998-11-15No194 Lbs5 ft11NoNoNo4UFAPro & Farm300,000$0$0$NoLink / NHL Link
Braeden KresslerC222003-01-05No169 Lbs5 ft9NoNoNo2ELCPro & Farm300,000$0$0$NoLink
Chris DriedgerG311994-05-18No208 Lbs6 ft4NoNoNo3UFAPro & Farm750,000$0$0$NoLink / NHL Link
Christoffer SedoffD232002-02-20No201 Lbs6 ft1NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Curtis DouglasC252000-03-06No235 Lbs6 ft9NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Ethan CardwellRW232002-08-30No180 Lbs5 ft11NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Ethan FrischD252000-10-29No192 Lbs5 ft11NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Gage QuinneyC/LW301995-07-29No200 Lbs5 ft11NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Hendrix LapierreC232002-02-09No180 Lbs6 ft0NoNoNo2RFAPro & Farm900,000$0$0$NoLink / NHL Link
Henrik TikkanenG252000-09-28No222 Lbs6 ft8NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Joe Snively (Out of Payroll)LW291996-01-01No176 Lbs5 ft9NoNoNo3UFAPro & Farm500,000$0$0$YesLink / NHL Link
Leo LoofD232002-04-25No176 Lbs6 ft2NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Marshall WarrenD242001-04-20No170 Lbs5 ft11NoNoNo4RFAPro & Farm300,000$0$0$NoLink
Mavrik BourqueC232002-01-08No181 Lbs5 ft11NoNoNo2RFAPro & Farm900,000$0$0$NoLink / NHL Link
Navrin MutterLW242001-03-15No190 Lbs6 ft3NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Nicolas Aube-KubelC/RW291996-05-10No213 Lbs6 ft0NoNoNo1UFAPro & Farm400,000$0$0$NoLink / NHL Link
Nikita NesterenkoC/LW242001-09-10No195 Lbs6 ft2NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Reese JohnsonC/RW271998-07-10No193 Lbs6 ft1NoNoNo3UFAPro & Farm300,000$0$0$NoLink / NHL Link
Ryder RolstonC/LW/RW242001-10-31No175 Lbs6 ft1NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Tim GettingerLW/RW271998-04-14No220 Lbs6 ft6NoNoNo4UFAPro & Farm400,000$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2325.91195 Lbs6 ft12.30393,478$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anthony RichardNicolas Aube-Kubel40122
2Reese Johnson30122
3Gage QuinneyEthan Cardwell20122
4Ryder Rolston10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Christoffer SedoffEthan Frisch30122
3Leo LoofMarshall Warren20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anthony RichardNicolas Aube-Kubel60122
2Reese Johnson40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Christoffer SedoffEthan Frisch40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Anthony Richard60122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Christoffer SedoffEthan Frisch40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Christoffer SedoffEthan Frisch40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Anthony Richard60122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Christoffer SedoffEthan Frisch40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Anthony RichardNicolas Aube-Kubel
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Anthony RichardNicolas Aube-Kubel
Extra Forwards
Normal PowerPlayPenalty Kill
Reese Johnson, Ethan Cardwell, Reese Johnson, Ethan CardwellReese Johnson
Extra Defensemen
Normal PowerPlayPenalty Kill
Ethan Frisch, Leo Loof, Marshall WarrenEthan FrischEthan Frisch, Leo Loof
Penalty Shots
, Anthony Richard, , Nicolas Aube-Kubel, Reese Johnson
Goalie
#1 : , #2 : Henrik Tikkanen


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2232W27913521468555315226043202
All Games
GPWLOTWOTL SOWSOLGFGA
2214502107948
Home Games
GPWLOTWOTL SOWSOLGFGA
127301104327
Visitor Games
GPWLOTWOTL SOWSOLGFGA
107201003621
Last 10 Games
WLOTWOTL SOWSOL
720010
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1102119.09%1071982.24%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
25819023543322232
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
34373046.99%27665841.95%17733053.64%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
557406517149250128


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
9 - 2025-08-2312Monsters0Bears7WBoxScore
10 - 2025-08-2428Monsters1Bears8WBoxScore
13 - 2025-08-2730Bears2Islanders1WBoxScore
16 - 2025-08-3047Wolves2Bears1LBoxScore
17 - 2025-08-3159Wolves1Bears2WBoxScore
22 - 2025-09-0575Bears4Bruins5LBoxScore
23 - 2025-09-0690Bears3Thunderbirds4LXBoxScore
24 - 2025-09-0797Bears3Bruins2WBoxScore
27 - 2025-09-10106Phantoms3Bears0LBoxScore
30 - 2025-09-13123Checkers2Bears5WBoxScore
31 - 2025-09-14136Checkers6Bears7WBoxScore
37 - 2025-09-20159Thunderbirds4Bears3LXBoxScore
38 - 2025-09-21170Thunderbirds2Bears3WXXBoxScore
40 - 2025-09-23181Bears4Islanders0WBoxScore
43 - 2025-09-26191Islanders1Bears3WBoxScore
44 - 2025-09-27209Bears3Phantoms4LBoxScore
48 - 2025-10-01223Bears7Marlies1WBoxScore
50 - 2025-10-03235Bears2Americans1WBoxScore
51 - 2025-10-04247Bears5Crunch2WBoxScore
55 - 2025-10-08262Rocket4Bears2LBoxScore
57 - 2025-10-10271Bears3Phantoms1WBoxScore
58 - 2025-10-11284Penguins1Bears2WBoxScore
62 - 2025-10-15304Bears-Penguins-
65 - 2025-10-18325Bears-Phantoms-
66 - 2025-10-19336Phantoms-Bears-
69 - 2025-10-22343Bears-Wolfpack-
71 - 2025-10-24353Bears-Crunch-
72 - 2025-10-25364Checkers-Bears-
79 - 2025-11-01414Marlies-Bears-
80 - 2025-11-02427Penguins-Bears-
86 - 2025-11-08441Penguins-Bears-
87 - 2025-11-09452Checkers-Bears-
93 - 2025-11-15484Bruins-Bears-
94 - 2025-11-16494Bruins-Bears-
96 - 2025-11-18501Phantoms-Bears-
99 - 2025-11-21509Bears-Checkers-
100 - 2025-11-22523Bears-Checkers-
106 - 2025-11-28559Senators-Bears-
108 - 2025-11-30583Americans-Bears-
111 - 2025-12-03595Bears-Rocket-
113 - 2025-12-05605Bears-Senators-
114 - 2025-12-06617Bears-Senators-
118 - 2025-12-10638Bears-Penguins-
120 - 2025-12-12646Islanders-Bears-
121 - 2025-12-13664Islanders-Bears-
128 - 2025-12-20695Crunch-Bears-
131 - 2025-12-23706Penguins-Bears-
135 - 2025-12-27732Bears-Penguins-
142 - 2026-01-03778Bears-Checkers-
143 - 2026-01-04793Bears-Checkers-
149 - 2026-01-10827Penguins-Bears-
150 - 2026-01-11842Phantoms-Bears-
153 - 2026-01-14850Senators-Bears-
Trade Deadline --- Trades can’t be done after this day is simulated!
155 - 2026-01-16860Bears-Monsters-
156 - 2026-01-17872Bears-Monsters-
160 - 2026-01-21896Bears-Penguins-
163 - 2026-01-24918Bears-Wolves-
164 - 2026-01-25929Bears-Wolves-
167 - 2026-01-28940Bears-Thunderbirds-
169 - 2026-01-30945Bears-Wolfpack-
170 - 2026-01-31961Bears-Penguins-
174 - 2026-02-04982Bears-Islanders-
177 - 2026-02-071006Bears-Comets-
178 - 2026-02-081022Comets-Bears-
183 - 2026-02-131045Bears-Phantoms-
184 - 2026-02-141053Wolfpack-Bears-
185 - 2026-02-151067Wolfpack-Bears-
190 - 2026-02-201082Bears-Penguins-
191 - 2026-02-211100Bears-Phantoms-
195 - 2026-02-251113Crunch-Bears-
197 - 2026-02-271125Penguins-Bears-
198 - 2026-02-281140Phantoms-Bears-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance22,72811,100
Attendance PCT94.70%92.50%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
24 2819 - 93.97% 70,545$846,542$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
331,455$ 81,500$ 81,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 26,455$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
1,693,084$ 139 5,408$ 751,712$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
128244230264327817610241211302212132874541231000431146895710927844672401001089173249308288028382069556112116574988817.67%4336784.53%81425253856.15%1282250451.20%636118253.81%223416731832545909462
13763924026142021515138201401201936924381910014131098227942023585600100747352196906326966251707551133014994587416.16%5326787.41%31341237956.37%1162235149.43%613106857.40%191213291783553907461
1476332505544199155443813120343310180213820130211198752393199319518114072615721100685715681211162389212673585515.36%3373988.43%11110227348.83%1093253543.12%508101250.20%181213201943525863412
1476332505544199155443813120343310180213820130211198752393199319518114072615721100685715681211162389212673585515.36%3373988.43%11110227348.83%1093253543.12%508101250.20%181213201943525863412
1476332505544199155443813120343310180213820130211198752393199319518114072615721100685715681211162389212673585515.36%3373988.43%11110227348.83%1093253543.12%508101250.20%181213201943525863412
158240310223425219557411819011111271002741221201123125953096252460712390979258245707828538042181647104415764257417.41%4336884.30%41223257847.44%1029254640.42%549121545.19%208415081922559955482
158240310223425219557411819011111271002741221201123125953096252460712390979258245707828538042181647104415764257417.41%4336884.30%41223257847.44%1029254640.42%549121545.19%208415081922559955482
1682165701314249395-1464192800112127198-714172901202122197-75432494086572001007968245407928458002766832106317193825614.66%44913170.82%4907247736.62%852235336.21%532135439.29%183413152227556891418
1772175201002216360-14436102500001115175-603672701001101185-84382163615771008779492403073582583627447737551491294279.18%3257576.92%1803214837.38%749221333.85%440121036.36%147210562077492782340
1872205100100176352-1763610250010090172-823610260000086180-944117633651202074554718810606619656303087773512482923813.01%3016678.07%2743180941.07%849247834.26%409114535.72%12578672296503767326
197095402212161359-198344280011074166-92365260210287193-1062816129345400061574018710607582665298187066912483073812.38%2717771.59%0574184631.09%659237627.74%362113931.78%11938172271507763313
202214500210794831127300110432716107200100362115327913521402332223268525819023545531522604321102119.09%1071982.24%234373046.99%27665841.95%17733053.64%557406517149250128
Total Regular Season86833840302739263524622696-23443415621001422151712311334-10343418219301317111812311362-131856246242146676128433936824618250002588009845580752654577741069716247426565515.36%429575582.42%31119122590245.99%111662763040.41%57911289444.91%200691444522682600297744655
Playoff
1240400000313-102020000035-22020000008-803580001204901513211112956852129.52%27485.19%0478952.81%6915245.39%325162.75%8860107304723
Total Playoff40400000313-102020000035-22020000008-803580001204901513211112956852129.52%27485.19%0478952.81%6915245.39%325162.75%8860107304723