Crunch

GP: 72 | W: 37 | L: 28 | OTL: 7 | P: 81
GF: 290 | GA: 264 | PP%: 17.29% | PK%: 77.89%
GM : Nick Fournier | Morale : 50 | Team Overall : 63

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Mason McTavish (R)X100.007235806676837569706568677160629350660
2Byron FroeseX100.007039876078877763786162686471765150650
3Karson KuhlmanXX100.007434866768797765716364656267683950640
4Brendan PerliniXX100.007542866486717064536268556466688150630
5Dmitrij JaskinX100.008636896384856864596255616671696550630
6Lane PedersonX100.006836816274827960766261596366675450620
7Max WillmanX100.006539796371848760685761596167695050620
8Christopher WilkieX100.006338825972786958526057565966684550590
9Chad YetmanX100.005936915868696356515754535662645250570
10Wyatt NewpowerX100.007334755682658155305654634565675250620
11Nikolas BrouillardX100.005743636164748659306257565067693750600
12Blake HillmanX100.006738925876666356305950574566685750590
Scratches
TEAM AVERAGE100.00693883617577756156615960596668565062
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Louis Domingue100.00737577857271737271737272845350730
2Trevin Kozlowski100.00676865906665676665676665734250670
Scratches
1Kaden Fulcher100.00646667846362646362646364714350650
TEAM AVERAGE100.0068707086676668676668676776465068
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Mike Van Ryn65707368645983CAN4321,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Karson KuhlmanCrunch (Tam)C/RW7257531103747512317043912235112.98%35115716.081292195242000009273.97%7300041.90120016107
2Lane PedersonCrunch (Tam)C7051571083950208716936812730013.86%33112216.048122078236000005461.75%139600041.92060041148
3Byron FroeseCrunch (Tam)C727625101-11063022627456514639513.45%75154121.412410341593010001238461.23%174900091.31181141463
4Wyatt NewpowerCrunch (Tam)D72106272-71600211137204751634.90%104148020.57617231302161013114020.00%000000.9701000036
5Brendan PerliniCrunch (Tam)C/LW7135134810400146932167219716.20%3871310.0400000000165150.00%8400021.3502000449
6Christopher WilkieCrunch (Tam)RW7212618-931158345107317211.21%363795.2700000000000052.17%2300000.9501012030
Team Total or Average42924121645769434708768881899573147812.69%321639614.915048984629971015143271361.38%3325000191.432201211353033
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Louis DomingueCrunch (Tam)2516720.9352.03145122497560500.850202535344
2Logan ThompsonTampa Lightning106130.9192.4661001253080000.5006100201
Team Total or Average3522850.9302.152061237410640500.769263535545


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Blake HillmanD271996-01-26No193 Lbs6 ft1NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Brendan PerliniC/LW261996-04-27No211 Lbs6 ft3NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Byron FroeseC311991-03-12No202 Lbs6 ft1NoNoNo2UFAPro & Farm500,000$0$0$NoLink / NHL Link
Chad YetmanRW232000-02-18No179 Lbs5 ft11NoNoNo3RFAPro & Farm300,000$0$0$NoLink
Christopher WilkieRW261996-07-10No190 Lbs6 ft0NoNoNo3RFAPro & Farm300,000$0$0$NoLink
Dmitrij JaskinRW291993-03-23No216 Lbs6 ft2NoNoNo1UFAPro & Farm500,000$0$0$NoLink
Kaden FulcherG241998-09-23No201 Lbs6 ft3NoNoNo1RFAPro & Farm300,000$0$0$NoLink
Karson KuhlmanC/RW271995-09-26No190 Lbs5 ft10NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Lane PedersonC251997-08-04No192 Lbs6 ft0NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Louis DomingueG301992-03-06No208 Lbs6 ft3NoNoNo1UFAPro & Farm750,000$0$0$NoLink / NHL Link
Mason McTavishC202003-01-30Yes213 Lbs6 ft0NoNoNo1ELCPro & Farm0$0$No
Max WillmanC281995-02-13No184 Lbs6 ft0NoNoNo2UFAPro & Farm300,000$0$0$NoLink
Nikolas BrouillardD281995-02-07No168 Lbs5 ft10NoNoNo2UFAPro & Farm300,000$0$0$NoLink
Trevin KozlowskiG251997-03-27No220 Lbs6 ft4NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Wyatt NewpowerD251997-12-09No194 Lbs6 ft3NoNoNo1RFAPro & Farm300,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1526.27197 Lbs6 ft11.60336,667$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Byron Froese40122
2Karson Kuhlman30122
320122
4Christopher Wilkie10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Wyatt Newpower40122
230122
320122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Byron Froese60122
2Karson Kuhlman40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Wyatt Newpower60122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Byron Froese40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Wyatt Newpower60122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Wyatt Newpower60122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Byron Froese40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Wyatt Newpower60122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Byron FroeseWyatt Newpower
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Byron FroeseWyatt Newpower
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , Byron Froese, ,
Goalie
#1 : , #2 :
Custom OT Lines Forwards
, , , , , , , , , ,
Custom OT Lines Defensemen
, , , ,


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
7281L329044173126322387712703128013
All Games
GPWLOTWOTL SOWSOLGFGA
7233282126290264
Home Games
GPWLOTWOTL SOWSOLGFGA
3618120024152131
Visitor Games
GPWLOTWOTL SOWSOLGFGA
3615162102138133
Last 10 Games
WLOTWOTL SOWSOL
370000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3476017.29%2946577.89%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
8518329275212379846
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1186228052.02%946219343.14%608118851.18%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
168612591905470774367


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2022-09-2912Crunch5Eagles4WBoxScore
4 - 2022-10-0125Crunch1Griffins2LXBoxScore
5 - 2022-10-0231Admirals3Crunch4WBoxScore
7 - 2022-10-0444Crunch1Moose2LBoxScore
8 - 2022-10-0559Firebirds1Crunch7WBoxScore
12 - 2022-10-0981Rocket3Crunch5WBoxScore
16 - 2022-10-13109Devils6Crunch5LXXBoxScore
18 - 2022-10-15126Crunch3Devils0WBoxScore
20 - 2022-10-17146Rocket4Crunch3LXXBoxScore
21 - 2022-10-18151Crunch3Bruins2WBoxScore
23 - 2022-10-20170Crunch3Eagles4LBoxScore
25 - 2022-10-22185Devils2Crunch4WBoxScore
28 - 2022-10-25205Eagles3Crunch4WXXBoxScore
30 - 2022-10-27221Crunch4Monsters2WBoxScore
33 - 2022-10-30237Penguins1Crunch4WBoxScore
35 - 2022-11-01255Crunch3Griffins1WBoxScore
37 - 2022-11-03264Bruins1Crunch2WXXBoxScore
40 - 2022-11-06291Comets5Crunch4LXXBoxScore
43 - 2022-11-09307Crunch1Rocket2LBoxScore
45 - 2022-11-11324Thunderbirds0Crunch5WBoxScore
47 - 2022-11-13343Crunch11Marlies2WBoxScore
49 - 2022-11-15357Monsters2Crunch3WBoxScore
51 - 2022-11-17369Crunch0Sound Tigers2LBoxScore
53 - 2022-11-19387Americans6Crunch2LBoxScore
55 - 2022-11-21397Crunch2Wolves8LBoxScore
57 - 2022-11-23413Crunch3Wild1WBoxScore
59 - 2022-11-25428Bears1Crunch8WBoxScore
61 - 2022-11-27439Crunch2Wolf Pack1WXBoxScore
63 - 2022-11-29457Sound Tigers3Crunch1LBoxScore
65 - 2022-12-01467Crunch3Eagles4LBoxScore
67 - 2022-12-03486Crunch7Thunderbirds0WBoxScore
69 - 2022-12-05495Crunch7Roadrunners1WBoxScore
70 - 2022-12-06509Reign1Crunch9WBoxScore
73 - 2022-12-09532Crunch10IceHogs1WBoxScore
74 - 2022-12-10539Wolf Pack3Crunch2LXXBoxScore
78 - 2022-12-14562Admirals3Crunch6WBoxScore
80 - 2022-12-16576Crunch5Admirals4WXBoxScore
82 - 2022-12-18595Gulls2Crunch3WBoxScore
84 - 2022-12-20610Crunch2Barracuda4LBoxScore
86 - 2022-12-22626Marlies4Crunch5WBoxScore
88 - 2022-12-24641Crunch3Moose6LBoxScore
90 - 2022-12-26659Checkers6Crunch2LBoxScore
93 - 2022-12-29681Crunch4Senators5LXXBoxScore
95 - 2022-12-31693Condors2Crunch7WBoxScore
97 - 2023-01-02714Senators6Crunch2LBoxScore
99 - 2023-01-04731Crunch2Penguins7LBoxScore
101 - 2023-01-06744Roadrunners2Crunch6WBoxScore
103 - 2023-01-08756Crunch4Phantoms6LBoxScore
106 - 2023-01-11780Barracuda4Crunch1LBoxScore
108 - 2023-01-13793Crunch0Rampage9LBoxScore
110 - 2023-01-15807Crunch7Gulls5WBoxScore
112 - 2023-01-17817Senators5Crunch2LBoxScore
115 - 2023-01-20839Crunch1Stars5LBoxScore
117 - 2023-01-22852Phantoms6Crunch1LBoxScore
119 - 2023-01-24869Crunch5Comets6LXXBoxScore
121 - 2023-01-26884IceHogs3Crunch7WBoxScore
123 - 2023-01-28906Wranglers10Crunch3LBoxScore
125 - 2023-01-30917Crunch9Reign2WBoxScore
128 - 2023-02-02938Rampage5Crunch2LBoxScore
130 - 2023-02-04954Crunch5Bears3WBoxScore
132 - 2023-02-06971Wild5Crunch7WBoxScore
133 - 2023-02-07980Crunch10Condors5WBoxScore
136 - 2023-02-101000Wolves5Crunch8WBoxScore
138 - 2023-02-121014Crunch2Americans6LBoxScore
139 - 2023-02-131025Crunch7Firebirds4WBoxScore
142 - 2023-02-161041Stars6Crunch2LBoxScore
144 - 2023-02-181058Crunch1Wranglers5LBoxScore
146 - 2023-02-201067Crunch1Checkers5LBoxScore
148 - 2023-02-221080Firebirds2Crunch9WBoxScore
151 - 2023-02-251105Griffins4Crunch3LBoxScore
152 - 2023-02-261112Crunch1Bruins7LBoxScore
159 - 2023-03-051149Moose6Crunch4LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance67,28233,642
Attendance PCT93.45%93.45%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 2803 - 93.45% 69,899$2,516,363$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,060,778$ 50,500$ 0$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 60,685$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 6,525$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
12824224045432491727741221102132129824741201302411120903010824944669511101008259220907137227491711511139218355107414.51%5767287.50%41584255661.97%1364233558.42%730118261.76%225316091733575989519
137638250452221917247381615023111108723382210022111098524952193866051120747960194205796916561716532120416284426314.25%5016287.62%71315230057.17%1227222855.07%613109256.14%199214051686539920480
14764024032432331409338221000141125656038181403102108753399233426659210090756122100746698748171852895914343385716.86%3784288.89%51375243956.38%1220228353.44%609108756.03%199214231706527906471
158243250363225618769412290342113479554121160021112210814106256469725180967975252208318448261834508102713824586313.76%4096185.09%71643275559.64%1282226256.68%716121059.17%223116161760567974508
1682333902323272299-2741171900212145149-441162002111127150-2380272441713150112718525420832773913243573490513734128620.87%3867381.09%61317254051.85%1113237146.94%634130348.66%195614222079553920450
1772332802126290264263618120002415213121361516021021381335812904417311312379846263285183292752238771270312803476017.29%2946577.89%11186228052.02%946219343.14%608118851.18%168612591905470774367
Total Regular Season470229165018221719151912342852351177607111311795593202235112890111148724641835691519260941287491235514703461405785145334655394411801352561908932250740316.07%254437585.26%3084201487056.62%71521367252.31%3910706255.37%12112873610870323554852798
Playoff
1151400000616-102020000017-63120000059-4261218000051810203427125301361233425.88%57984.21%06714446.53%9817655.68%366654.55%10566132406229
1251400000515-102110000055030300000010-10251015010113810262628145358913016212.50%38781.58%07513256.82%9217054.12%356553.85%10063138376329
1412750000024195541000001073734000001412214244165020104734901039487330981252479477.45%54590.74%024049348.68%21547545.26%8018942.33%34723937211218390
15514000001319-62020000049-531200000910-12132336010355134040484612429598327725.93%26773.08%06516439.63%5112341.46%277237.50%11378124376230
Total Playoff271017000004869-211156000002028-816511000002841-1320488613404014151664501892021887241924095831711810.53%1752884.00%044793347.91%45694448.31%17839245.41%666447767227371179