Stars

GP: 34 | W: 26 | L: 7 | OTL: 1 | P: 53
GF: 136 | GA: 65 | PP%: 23.74% | PK%: 84.69%
GM : Sam Vienneau | Morale : 50 | Team Overall : 63
Next Games #574 vs Admirals

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Hunter McKown0X98.006939845978818356655958575663654350600
2Emilio Pettersen0X99.005737845966788658686056555765674850600
3Kai Uchacz0X99.007343695682737257635858595562644550600
4Scott Reedy0X98.007238936181746658625660595766685950600
5Matyas Sapovaliv0X99.007839915587737454615356585561637350590
6Gabriel Szturc0X99.006237915971697058635756555462644350580
7Lucas Carlsson0X100.006239746572898063306760685169675050660
8Cam Dineen0X100.006036906270878359306356654967695650640
9Santeri Hatakka0X100.006740776376807457306254654764664850630
10Filip Kral0X100.007139845880717257306155594766685250620
11Tyson Hinds0X100.007240815781678756305553584662646650610
12Corson Ceulemans0X100.007140845880717456305553574562648150600
13Jakub Dvorak0X100.008142815590626854305250574560627250600
14Joe Hicketts0X100.005537806164687759306453554769743650600
15Brandon Hickey0X100.007238915681667155305354574569715450600
Scratches
1Tyson Kozak0X88.016539826369767762665960615863654950610
2Marc Del Gaizo0X91.356738846570858763306659645266685850650
TEAM AVERAGE98.29683984607675775844595659516466555061
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Spencer Martin99.00788277827776787776787770845450760
2Felix Sandstrom100.00748075837372747372747368815550730
Scratches
1Michael Houser100.00687570746766686766686773872650680
2Keith Petruzzelli100.00667571866564666564666566756050670
TEAM AVERAGE99.7572787381717072717072716982495071
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Todd Reirden74707371797470USA5431,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Tyson KozakStars (Dal)C31232346271602272146387915.75%554117.48281020531013114168.75%51200001.7011000244
2Emilio PettersenStars (Dal)LW34212445228050501524610413.82%579623.428715471330001194052.78%7200011.1301000614
3Kai UchaczStars (Dal)C3482230254830954710430867.69%670720.7937102058000003064.02%35300000.8500312234
4Hunter McKownStars (Dal)C3411162716120404911241879.82%582424.2523520640002310170.72%22200000.6500000120
5Tyson HindsStars (Dal)D348162421421040243572522.86%1563218.6100000000004162.50%800000.7600101113
6Scott ReedyStars (Dal)C3410112113180305289319111.24%853315.68000000110211070.99%42400000.7900000240
7Santeri HatakkaStars (Dal)D346152124215463554173511.11%2169820.561014190000181050.00%1600000.6000010021
8Matyas SapovalivStars (Dal)C3499189240523872215512.50%473921.753031025000152064.32%22700000.4900000203
9Joe HickettsStars (Dal)D3441317156019374313209.30%1357116.8000000000000042.86%2100100.6000000210
10Lucas CarlssonStars (Dal)D1151116410102062871217.86%1224422.195492328000037000.00%000001.3100101131
11Jakub DvorakStars (Dal)D30410141626065153072213.33%1452617.5400005000000127.27%1100000.5300000000
12Cam DineenStars (Dal)D1841014154081727152614.81%1938321.3101112220000292075.00%2000000.7300000020
13Filip KralStars (Dal)D3411213131404924199145.26%2256716.690000000003100.00%100000.4600000011
14Brandon HickeyStars (Dal)D344812124023193571811.43%2339511.6300013000030050.00%600000.6100000101
15Marc Del GaizoStars (Dal)D82795401814751328.57%1118523.15112311000025000.00%100000.9700000100
16Jake WiseDallas StarsC634730010827102611.11%212120.171236110002121177.01%8700001.1600000002
17Gabriel SzturcStars (Dal)C51341006612498.33%18817.69123310000001090.00%1000000.9000000001
18Corson CeulemansStars (Dal)D5000000100000.00%061.250000000003000.00%000000.0000000010
19Zack MacEwenDallas StarsRW1000000121110.00%088.47000000000100100.00%100000.0000000000
Team Total or Average4551242143382412575559551599330972312.49%186857118.84273562169451112922324567.27%199200110.7912524212525
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Spencer MartinStars (Dal)3023700.9211.80177106536700011.00033029333
2Jet GreavesDallas Stars43010.8832.25240009770100.000040000
Team Total or Average3426710.9171.85201106627470111.00033429333


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Brandon HickeyD291996-04-13No201 Lbs6 ft2NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Cam DineenD271998-06-19No188 Lbs5 ft11NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Corson CeulemansD222003-05-05No198 Lbs6 ft2NoNoNo2ELCPro & Farm900,000$0$0$NoLink / NHL Link
Emilio PettersenLW252000-04-03No170 Lbs5 ft11NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Felix SandstromG291997-01-12No211 Lbs6 ft2NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Filip KralD261999-10-20No198 Lbs6 ft2NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Gabriel SzturcC222003-09-24No194 Lbs5 ft11NoNoNo2ELCPro & Farm300,000$0$0$NoLink
Hunter McKownC232002-08-18No205 Lbs6 ft1NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Jakub DvorakD202005-05-25No203 Lbs6 ft5NoNoNo4ELCPro & Farm500,000$0$0$NoLink
Joe HickettsD291996-05-04No180 Lbs5 ft8NoNoNo1UFAPro & Farm500,000$0$0$NoLink / NHL Link
Kai UchaczC222003-06-24No209 Lbs6 ft2NoNoNo2ELCPro & Farm300,000$0$0$NoLink
Keith PetruzzelliG261999-02-09No185 Lbs6 ft5NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Lucas CarlssonD281997-07-05No190 Lbs6 ft0NoNoNo2UFAPro & Farm300,000$0$0$NoLink / NHL Link
Marc Del Gaizo (Out of Payroll)D261999-10-11No188 Lbs5 ft11NoNoNo1RFAPro & Farm300,000$0$0$YesLink / NHL Link
Matyas SapovalivC212004-02-12No203 Lbs6 ft4NoNoNo4ELCPro & Farm500,000$0$0$NoLink
Michael HouserG331992-09-13No185 Lbs6 ft1NoNoNo2UFAPro & Farm500,000$0$0$NoLink / NHL Link
Santeri HatakkaD242001-01-15No191 Lbs6 ft1NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Scott ReedyC261999-04-04No205 Lbs6 ft2NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Spencer MartinG301995-06-08No191 Lbs6 ft3NoNoNo2UFAPro & Farm1,000,000$0$0$NoLink / NHL Link
Tyson HindsD222003-03-12No188 Lbs6 ft3NoNoNo3ELCPro & Farm300,000$0$0$NoLink / NHL Link
Tyson Kozak (Out of Payroll)C232002-12-29No185 Lbs5 ft11NoNoNo2RFAPro & Farm300,000$0$0$YesLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2125.38194 Lbs6 ft11.95428,571$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Emilio PettersenKai Uchacz40122
2Matyas SapovalivHunter McKownGabriel Szturc30122
3Jakub DvorakScott ReedyJoe Hicketts20122
4Kai UchaczHunter McKown10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Lucas Carlsson40122
2Cam DineenSanteri Hatakka30122
3Filip KralTyson Hinds20122
4Jakub DvorakJoe Hicketts10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Emilio PettersenKai Uchacz60122
2Matyas SapovalivHunter McKownGabriel Szturc40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Lucas Carlsson60122
2Cam DineenSanteri Hatakka40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Hunter McKown60122
2Emilio PettersenScott Reedy40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Lucas Carlsson60122
2Cam DineenSanteri Hatakka40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Lucas Carlsson60122
2Hunter McKown40122Cam DineenSanteri Hatakka40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Hunter McKown60122
2Emilio PettersenScott Reedy40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Lucas Carlsson60122
2Cam DineenSanteri Hatakka40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Emilio PettersenKai UchaczLucas Carlsson
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Emilio PettersenKai UchaczLucas Carlsson
Extra Forwards
Normal PowerPlayPenalty Kill
Matyas Sapovaliv, Gabriel Szturc, Scott ReedyMatyas Sapovaliv, Gabriel SzturcScott Reedy
Extra Defensemen
Normal PowerPlayPenalty Kill
Brandon Hickey, Corson Ceulemans, Filip KralBrandon HickeyCorson Ceulemans, Filip Kral
Penalty Shots
, Hunter McKown, Emilio Pettersen, Scott Reedy, Kai Uchacz
Goalie
#1 : Spencer Martin, #2 : Felix Sandstrom


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
3453W1136252388106276622726763316
All Games
GPWLOTWOTL SOWSOLGFGA
34257011013665
Home Games
GPWLOTWOTL SOWSOLGFGA
1410201106026
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2015500007639
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1393323.74%981584.69%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
31836737455143411
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
648100364.61%51387258.83%34453064.91%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1062810592190390225


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
8 - 2025-08-225Silver Knights4Stars6WBoxScore
9 - 2025-08-2320Silver Knights3Stars2LXBoxScore
16 - 2025-08-3057Stars5Roadrunners1WBoxScore
17 - 2025-08-3164Stars5Roadrunners1WBoxScore
22 - 2025-09-0578Wild0Stars7WBoxScore
23 - 2025-09-0692Wild1Stars7WBoxScore
29 - 2025-09-12118Stars3Eagles0WBoxScore
30 - 2025-09-13133Stars3Eagles5LBoxScore
37 - 2025-09-20165Moose2Stars3WBoxScore
38 - 2025-09-21175Moose0Stars4WBoxScore
43 - 2025-09-26197Stars3Wild2WBoxScore
44 - 2025-09-27207Stars2Wild0WBoxScore
47 - 2025-09-30222Stars3IceHogs1WBoxScore
50 - 2025-10-03236IceHogs0Stars3WBoxScore
51 - 2025-10-04250IceHogs2Stars6WBoxScore
57 - 2025-10-10277Stars5Reign2WBoxScore
58 - 2025-10-11291Stars3Firebirds1WBoxScore
61 - 2025-10-14299Stars5Reign1WBoxScore
63 - 2025-10-16307Stars4Firebirds6LBoxScore
65 - 2025-10-18331Stars7Silver Knights3WBoxScore
66 - 2025-10-19340Stars4Silver Knights2WBoxScore
71 - 2025-10-24358Wolves2Stars3WXXBoxScore
72 - 2025-10-25369Wolves3Stars1LBoxScore
75 - 2025-10-28384Griffins3Stars7WBoxScore
76 - 2025-10-29392Griffins1Stars3WBoxScore
79 - 2025-11-01416Stars1Admirals2LBoxScore
80 - 2025-11-02426Stars2Griffins5LBoxScore
87 - 2025-11-09453Stars7Moose2WBoxScore
89 - 2025-11-11460Stars7Moose1WBoxScore
92 - 2025-11-14477Roadrunners2Stars0LBoxScore
93 - 2025-11-15490Roadrunners3Stars8WBoxScore
97 - 2025-11-19505Stars4IceHogs2WBoxScore
99 - 2025-11-21517Stars0Admirals2LBoxScore
100 - 2025-11-22530Stars3IceHogs0WBoxScore
107 - 2025-11-29574Admirals-Stars-
108 - 2025-11-30585Admirals-Stars-
114 - 2025-12-06619Stars-Wild-
115 - 2025-12-07631Stars-Wild-
118 - 2025-12-10640Stars-Admirals-
120 - 2025-12-12655Firebirds-Stars-
121 - 2025-12-13671Firebirds-Stars-
127 - 2025-12-19684IceHogs-Stars-
128 - 2025-12-20700IceHogs-Stars-
132 - 2025-12-24716Stars-Moose-
134 - 2025-12-26726Stars-Moose-
141 - 2026-01-02776Eagles-Stars-
142 - 2026-01-03787Eagles-Stars-
145 - 2026-01-06804Griffins-Stars-
146 - 2026-01-07809Griffins-Stars-
149 - 2026-01-10834Wolves-Stars-
150 - 2026-01-11843Wolves-Stars-
153 - 2026-01-14848Stars-Admirals-
Trade Deadline --- Trades can’t be done after this day is simulated!
156 - 2026-01-17879Stars-IceHogs-
157 - 2026-01-18887Stars-Wolves-
162 - 2026-01-23909Monsters-Stars-
163 - 2026-01-24920Monsters-Stars-
166 - 2026-01-27934Reign-Stars-
167 - 2026-01-28942Reign-Stars-
169 - 2026-01-30954Stars-Wolves-
171 - 2026-02-01975Stars-Wolves-
174 - 2026-02-04985Stars-Griffins-
176 - 2026-02-06992Stars-Monsters-
177 - 2026-02-071005Stars-Monsters-
180 - 2026-02-101025Wild-Stars-
181 - 2026-02-111034Wild-Stars-
184 - 2026-02-141059Admirals-Stars-
185 - 2026-02-151068Admirals-Stars-
190 - 2026-02-201081Stars-Griffins-
191 - 2026-02-211098Stars-Griffins-
192 - 2026-02-221109Stars-Wolves-
197 - 2026-02-271133Moose-Stars-
198 - 2026-02-281147Moose-Stars-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance26,65313,335
Attendance PCT95.19%95.25%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
22 2856 - 95.21% 71,210$996,935$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
547,330$ 84,000$ 84,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 47,330$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
1,566,612$ 100 5,420$ 542,000$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
12825313053622771411364124100034011876424129305022159659413327749977611009910760235907347848231599481132517285128716.99%5426388.38%81711264264.76%1424226962.76%737115663.75%240817441586560981541
137630340244221020643815140034210498638152002100106108-27821035756715081665719130625639626218262199815674166716.11%4177282.73%31082213650.66%1155253245.62%534111248.02%171911991999555887424
147653100236226310216138273012321264878382670113013754831272634667291170106826723420741794793151441576313643705715.41%3173090.54%61456244559.55%1158203856.82%628105759.41%216916011536508905484
147653100236226310216138273012321264878382670113013754831272634667291170106826723420741794793151441576313643705715.41%3173090.54%61456244559.55%1158203856.82%628105759.41%216916011536508905484
147653100236226310216138273012321264878382670113013754831272634667291170106826723420741794793151441576313643705715.41%3173090.54%61456244559.55%1158203856.82%628105759.41%216916011536508905484
158246200354424815197412380323213178534123120031211773441152484547020130898369225207177577581777531109115314306815.81%4434589.84%51490256158.18%1330232757.16%675117257.59%226516271721560987525
158246200354424815197412380323213178534123120031211773441152484547020130898369225207177577581777531109115314306815.81%4434589.84%51490256158.18%1330232757.16%675117257.59%226516271721560987525
168239260841425517976411912052031348648412014032111219328104255475730070968268205606277246771761553123016214298118.88%5156587.38%61449245659.00%1380234558.85%683116558.63%220815781772569986518
17723924023222151546136201301101105743136191101221110803091215375590013082785119670637656653181553096514583677620.71%3824987.17%61146213253.75%1027219046.89%48898949.34%195014221576477829438
1872333403200301323-2236171801000154158-436161602200147165-1874301509810100130987025590794874875242967169715463247924.38%2988272.48%21012213447.42%813197241.23%585124646.95%190514401643431779401
19706430020136698268343120000118151130363310020018547138131366674104011601611149127750889963912137938472214503268425.77%3022791.06%61796239774.93%1262170973.84%800106774.98%237518421064372771467
20342570011013665711410200110602634201550000076393753136252388165143411106231836737457662272676331393323.74%981584.69%1648100364.61%51387258.83%34453064.91%1062810592190390225
Total Regular Season88053421103238402530451774127143626396016202417149686962744427111501618168154990564412753045544784928134511188998737262213188330891084662002757741067517157448381418.16%439155387.41%60161922735759.19%137082465755.59%74051278057.94%2466718098182865803103155521
Playoff
1151400000510-53120000036-32020000024-225813000221890373022132391241043738.11%54787.04%07815052.00%10518855.85%316944.93%11373125416029
1220128000005346711650000029272963000002419524539915200014201551301321771544661482814381501812.00%1211290.08%033464351.94%33666150.83%17030855.19%536367499169274142
13734000002329-6321000001174413000001222-10623456801010851600425761268746410930826.67%331457.58%04513433.58%7121932.42%5011145.05%9564253507026
1451400000710-33030000047-3211000003302712190001411050273936962777921600.00%31680.65%17314450.69%7313753.28%377648.68%13190111376734
15734000009904220000066031200000330691827010306138043384416152901554324.65%45491.11%09520845.67%12623852.94%418150.62%177119184579246
16624000001316-33210000096330300000410-6413223500060613703651431463912911327414.81%47882.98%010618158.56%11518960.85%569260.87%146100146437538
1751400000826-1821100000510-530300000316-13281018000341790272520242597610218422.22%371170.27%02010918.35%4922521.78%228924.72%9664166375825
18514000002129-8211000001011-1303000001118-72213556000858159037635725153449117423.53%20480.00%15413440.30%4915930.82%238826.14%10375149315122
19161060000049361386200000271215844000002224-22049901390201419135070153175149366105227306861213.95%971584.54%031358453.60%25347653.15%13125451.57%448320367116202105
Total Playoff76344200000188211-233921180000010492123713240000084119-3568188339527040616256188705346555862128596111215104245512.97%4858183.30%21118228748.89%1177249247.23%561116848.03%184912772003585952470