Admirals

GP: 32 | W: 27 | L: 4 | OTL: 1 | P: 55
GF: 135 | GA: 56 | PP%: 25.16% | PK%: 90.00%
GM : Sébastien Tremblay | Morale : 50 | Team Overall : 63
Next Games #539 vs IceHogs

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Rory Kerins0XX100.006135936865858367696665646863654950650
2David Gustafsson0X100.006539956480737562826160676365676450630
3Brandon Gignac0XX100.006138786370847561686058646268705350620
4Maxim Groshev0XX100.007139895980798358555657545864666250600
5Josh Lopina0XX100.007039895879668457615556595764666150600
6Zachary Gallant0X100.006941735978756156655857555966686150590
7Jalen Luypen0XX100.005936875761728258625556545763654950580
8Sam Lipkin0XX100.007040835779717256545555585662644950580
9Ryan Tverberg0XX100.005537885664747754655855535663654950570
10Jake Bean0X100.006135916676868765306758685269677250670
11Adam Wilsby0X100.006538886675857865306458635165675950650
12Ian Mitchell0X100.006337866673848264306758625066686550650
13Antti Tuomisto0X100.007641796185718259306054624564667450640
14Connor Mackey0X100.007463596084838157305958624969713650640
15Ethan Bear0X100.006737856572817664306857605269714950640
16William Wallinder0X100.007639945985658458305752634563657750630
17Jack Millar0X100.008442915493667153305650604565674250620
18Ryan Mast0X100.008542855294646751305350594562644950600
19Jorian Donovan0X100.006543665674647155305453574561635750580
Scratches
1Nikita Grebenkin0XX100.007241756482757063576058566163645750610
2Travis Hamonic0X100.007138836373878062306655724885753650680
3Luke Krys0X100.006840815477707353305653554665674250590
TEAM AVERAGE100.00694084607775775945605660536667555062
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Clay Stevenson100.00778480857675777675777666755550750
2Nikke Kokko100.00787774807776787776787761657050740
3Carl Lindbom100.00777874707675777675777662674950720
Scratches
TEAM AVERAGE100.0077807678767577767577766369585074
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jean-Francois Houle76637467757177CAN5071,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Rory KerinsAdmirals (Nas)C/LW322433572525522561744212913.79%1476723.9910132351138101101544160.67%8900001.4811000652
2David GustafssonAdmirals (Nas)C32142337208026761212510611.57%1066520.802810151041127873070.72%74800001.1111000316
3Adam WilsbyAdmirals (Nas)D32330331610032253919477.69%2268721.4911011221010001106000.00%000000.9600000112
4Antti TuomistoAdmirals (Nas)D3218133118260443066122727.27%1960618.96841229860111943162.50%800001.0200000323
5Brandon GignacAdmirals (Nas)C/LW32141024231003034117246911.97%755617.3933616650001394077.78%4500000.8600000450
6Connor MackeyAdmirals (Nas)D326172317601067196529359.23%2451316.0455104472000159110.00%000000.9000101212
7Jake BeanAdmirals (Nas)D21712197140172639102017.95%2047622.704593192000094210.00%000000.8000000131
8Jalen LuypenAdmirals (Nas)C/LW32510151016014244793810.64%439912.4700003000010073.68%7600000.7500000020
9Ethan BearAdmirals (Nas)D323121591001719113827.27%739312.300000000005000.00%000000.7600000030
10Ian MitchellAdmirals (Nas)D134101436081826111715.38%325719.8216714440110461150.00%200001.0900000102
11Maxim GroshevAdmirals (Nas)LW/RW3268141724052147518498.00%365620.51123111010000372080.41%9700000.4300000100
12Zachary GallantAdmirals (Nas)C3286147140342551102815.69%13149.8300002000022169.92%24600000.8900000201
13Peyton KrebsNashville PredatorsC/LW116814118019364281914.29%026524.1722411511015612170.67%34100001.0500000203
14Ryan TverbergAdmirals (Nas)C/RW314711154011235314447.55%251516.6100007000000060.00%2500000.4300000000
15Jack MillarAdmirals (Nas)D32191015300481099611.11%1541613.00000290110351060.38%5300000.4800000001
16Nikita GrebenkinAdmirals (Nas)LW/RW1528101112030112910236.90%027718.482247540000271055.00%2000000.7200000001
17Josh LopinaAdmirals (Nas)C/RW2234741602130368338.33%135316.080006560000450061.74%34500000.4000000010
18Ryan MastAdmirals (Nas)D312468175253104720.00%62277.3300031000029000.00%200100.5300001011
19Jorian DonovanAdmirals (Nas)D3022498091193422.22%62167.2200010000020069.39%4900000.3700000000
20Travis HamonicAdmirals (Nas)D50444401137450.00%911422.82011615000018000.00%000000.7000000000
21Sam LipkinAdmirals (Nas)C/LW1222431209211241616.67%218415.3600000000000061.54%1300000.4300000001
22William WallinderAdmirals (Nas)D160334007103020.00%61056.5800000000000044.44%900000.5700000000
Team Total or Average55913423536925633420553524104127673212.87%181897116.05396110026910113472695026768.63%216800100.8222102262526
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Clay StevensonAdmirals (Nas)3226410.9131.75188605556340201.0002320112
2Nikke KokkoAdmirals (Nas)11000.9091.3644001110000.0000032000
Team Total or Average3327410.9131.74193105566450201.00023232112


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam WilsbyD252000-08-07No188 Lbs6 ft1NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Antti TuomistoD242001-01-20No194 Lbs6 ft4NoNoNo3RFAPro & Farm900,000$0$0$NoLink / NHL Link
Brandon GignacC/LW281997-11-07No170 Lbs5 ft11NoNoNo1UFAPro & Farm300,000$0$0$NoLink / NHL Link
Carl LindbomG222003-05-20No165 Lbs6 ft0NoNoNo4ELCPro & Farm300,000$0$0$NoLink
Clay StevensonG261999-03-03No195 Lbs6 ft4NoNoNo2RFAPro & Farm500,000$0$0$NoLink / NHL Link
Connor MackeyD291996-09-12No205 Lbs6 ft3NoNoNo2UFAPro & Farm300,000$0$0$NoLink / NHL Link
David GustafssonC252000-04-11No196 Lbs6 ft2NoNoNo2RFAPro & Farm300,000$0$0$NoLink / NHL Link
Ethan BearD281997-06-26No197 Lbs5 ft11NoNoNo1UFAPro & Farm1,000,000$0$0$NoLink / NHL Link
Ian MitchellD261999-01-18No192 Lbs6 ft0NoNoNo4RFAPro & Farm500,000$0$0$NoLink / NHL Link
Jack MillarD252000-11-30No220 Lbs6 ft5NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Jake BeanD271998-06-09No191 Lbs6 ft1NoNoNo1UFAPro & Farm1,000,000$0$0$NoLink / NHL Link
Jalen LuypenC/LW232002-06-28No155 Lbs5 ft10NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Jorian DonovanD212004-04-05No182 Lbs6 ft1NoNoNo4ELCPro & Farm300,000$0$0$NoLink
Josh LopinaC/RW242001-02-16No195 Lbs6 ft2NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Luke KrysD252000-09-27No185 Lbs6 ft2NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Maxim GroshevLW/RW242001-12-14No196 Lbs6 ft2NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Nikita GrebenkinLW/RW222003-05-02No210 Lbs6 ft2NoNoNo4ELCPro & Farm500,000$0$0$NoLink
Nikke KokkoG212004-03-14No184 Lbs6 ft3NoNoNo4ELCPro & Farm500,000$0$0$NoLink
Rory KerinsC/LW232002-04-12No175 Lbs5 ft10NoNoNo3RFAPro & Farm300,000$0$0$NoLink / NHL Link
Ryan MastD232003-01-14No221 Lbs6 ft5NoNoNo4RFAPro & Farm300,000$0$0$NoLink
Ryan TverbergC/RW232002-01-30No168 Lbs5 ft10NoNoNo1RFAPro & Farm300,000$0$0$NoLink / NHL Link
Sam LipkinC/LW232003-01-03No192 Lbs6 ft2NoNoNo4RFAPro & Farm300,000$0$0$NoLink
Travis HamonicD351990-08-16No195 Lbs6 ft0NoNoNo1UFAPro & Farm1,000,000$0$0$NoLink / NHL Link
William WallinderD232002-07-28No191 Lbs6 ft4NoNoNo3RFAPro & Farm500,000$0$0$NoLink / NHL Link
Zachary GallantC261999-03-06No188 Lbs6 ft2NoNoNo2RFAPro & Farm300,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2524.84190 Lbs6 ft12.48448,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Rory KerinsDavid Gustafsson42122
2Brandon GignacJosh LopinaMaxim Groshev32122
3Sam LipkinZachary GallantRyan Tverberg20122
4Sam LipkinJalen LuypenRyan Tverberg6131
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jake BeanAdam Wilsby40122
2Ian MitchellAntti Tuomisto30122
3Connor MackeyEthan Bear20122
4William WallinderJack Millar10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Rory KerinsDavid Gustafsson60122
2Brandon GignacJosh LopinaMaxim Groshev40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Jake BeanAdam Wilsby60122
2Ian MitchellAntti Tuomisto40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1David GustafssonRory Kerins60122
2Josh LopinaBrandon Gignac40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Jake BeanAdam Wilsby60122
2Ian MitchellAntti Tuomisto40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1David Gustafsson60122Jake BeanAdam Wilsby60122
2Josh Lopina40122Ian MitchellAntti Tuomisto40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1David GustafssonRory Kerins60122
2Josh LopinaBrandon Gignac40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jake BeanAdam Wilsby60122
2Ian MitchellAntti Tuomisto40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Rory KerinsDavid GustafssonJake BeanAdam Wilsby
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Rory KerinsDavid GustafssonJake BeanAdam Wilsby
Extra Forwards
Normal PowerPlayPenalty Kill
Maxim Groshev, Josh Lopina, Zachary GallantMaxim Groshev, Josh LopinaMaxim Groshev
Extra Defensemen
Normal PowerPlayPenalty Kill
Jack Millar, Ryan Mast, Jorian DonovanJack MillarJack Millar, Ryan Mast
Penalty Shots
Rory Kerins, David Gustafsson, Brandon Gignac, , Maxim Groshev
Goalie
#1 : Clay Stevenson, #2 : Nikke Kokko


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
3255W2135240375104464518533855805
All Games
GPWLOTWOTL SOWSOLGFGA
32244211013556
Home Games
GPWLOTWOTL SOWSOLGFGA
1512110106318
Visitor Games
GPWLOTWOTL SOWSOLGFGA
1712311007238
Last 10 Games
WLOTWOTL SOWSOL
612010
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1553925.16%1501590.00%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
365335334125935384
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
704100669.98%53882864.98%31446966.95%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1003756559192369212


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
8 - 2025-08-222Admirals3Griffins2WBoxScore
9 - 2025-08-2318Admirals3Wolves1WBoxScore
15 - 2025-08-2938Admirals7IceHogs1WBoxScore
16 - 2025-08-3049IceHogs1Admirals7WBoxScore
20 - 2025-09-0367Admirals6Wild2WBoxScore
22 - 2025-09-0577Wolves1Admirals3WBoxScore
23 - 2025-09-0691Admirals1Wolves2LXBoxScore
29 - 2025-09-12117Admirals7Moose5WBoxScore
30 - 2025-09-13127Admirals1Moose2LBoxScore
37 - 2025-09-20162Wolves2Admirals1LBoxScore
38 - 2025-09-21174Admirals1Wolves3LBoxScore
41 - 2025-09-24183Moose0Admirals5WBoxScore
44 - 2025-09-27206Griffins1Admirals4WBoxScore
51 - 2025-10-04243Admirals7Monsters3WBoxScore
52 - 2025-10-05254Admirals5Monsters2WBoxScore
57 - 2025-10-10270Admirals5Griffins3WBoxScore
58 - 2025-10-11285IceHogs3Admirals6WBoxScore
61 - 2025-10-14298Monsters0Admirals6WBoxScore
65 - 2025-10-18323Admirals5Wild1WBoxScore
66 - 2025-10-19335Admirals4Wild1WBoxScore
71 - 2025-10-24357Wild1Admirals5WBoxScore
73 - 2025-10-26378Admirals7IceHogs2WBoxScore
76 - 2025-10-29386Admirals3Wolves2WXBoxScore
78 - 2025-10-31400Admirals5Griffins2WBoxScore
79 - 2025-11-01416Stars1Admirals2WBoxScore
85 - 2025-11-07434Wolves0Admirals3WBoxScore
86 - 2025-11-08448Admirals2Wolves4LBoxScore
88 - 2025-11-10456Monsters3Admirals4WXXBoxScore
92 - 2025-11-14476Wild0Admirals7WBoxScore
93 - 2025-11-15488Griffins2Admirals3WXBoxScore
97 - 2025-11-19504Moose3Admirals5WBoxScore
99 - 2025-11-21517Stars0Admirals2WBoxScore
101 - 2025-11-23539Admirals-IceHogs-
103 - 2025-11-25542Admirals-Checkers-
104 - 2025-11-26547Admirals-Checkers-
107 - 2025-11-29574Admirals-Stars-
108 - 2025-11-30585Admirals-Stars-
111 - 2025-12-03596IceHogs-Admirals-
113 - 2025-12-05608Checkers-Admirals-
114 - 2025-12-06618Checkers-Admirals-
118 - 2025-12-10640Stars-Admirals-
120 - 2025-12-12653Moose-Admirals-
121 - 2025-12-13670Admirals-IceHogs-
127 - 2025-12-19683Griffins-Admirals-
128 - 2025-12-20697Griffins-Admirals-
131 - 2025-12-23708Admirals-IceHogs-
133 - 2025-12-25721Thunderbirds-Admirals-
136 - 2025-12-28743Admirals-Moose-
137 - 2025-12-29754Admirals-Moose-
140 - 2026-01-01767Admirals-Wolves-
141 - 2026-01-02774Silver Knights-Admirals-
142 - 2026-01-03783Silver Knights-Admirals-
145 - 2026-01-06803Phantoms-Admirals-
148 - 2026-01-09820Wild-Admirals-
153 - 2026-01-14848Stars-Admirals-
Trade Deadline --- Trades can’t be done after this day is simulated!
155 - 2026-01-16864Wolves-Admirals-
156 - 2026-01-17876Wild-Admirals-
162 - 2026-01-23905Admirals-Griffins-
163 - 2026-01-24915Wolfpack-Admirals-
164 - 2026-01-25928IceHogs-Admirals-
167 - 2026-01-28939Admirals-Phantoms-
169 - 2026-01-30951Admirals-Thunderbirds-
170 - 2026-01-31962Admirals-Wolfpack-
173 - 2026-02-03980Moose-Admirals-
176 - 2026-02-061000Admirals-Silver Knights-
177 - 2026-02-071015Admirals-Silver Knights-
184 - 2026-02-141059Admirals-Stars-
185 - 2026-02-151068Admirals-Stars-
188 - 2026-02-181076Admirals-Wild-
191 - 2026-02-211097Wolves-Admirals-
192 - 2026-02-221110IceHogs-Admirals-
197 - 2026-02-271131Wolves-Admirals-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance27,51414,105
Attendance PCT91.71%94.03%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
21 2775 - 92.49% 68,908$1,033,618$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
555,525$ 112,000$ 112,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 55,525$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
1,447,065$ 100 5,560$ 556,000$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
12825914001442871311564131500131153609341289000131347163131287510797119010511167233207807927461650495121017125329618.05%4995489.18%31572264059.55%1248223955.74%705114861.41%232616931670555964519
137639210446224015783381814021211178235382170234112375481042404176570100847769194806126706431571504119915244097518.34%5206986.73%91352229258.99%1229222155.34%623106358.61%206514761645521906485
1476462002233259139120382213010021227151382470123113768691072594737320110100767822420699731792169646989813253545916.67%3563889.33%51418235560.21%1294220758.63%640111257.55%208415131611511902478
1476462002233259139120382213010021227151382470123113768691072594737320110100767822420699731792169646989813253545916.67%3563889.33%51418235560.21%1294220758.63%640111257.55%208415131611511902478
1476462002233259139120382213010021227151382470123113768691072594737320110100767822420699731792169646989813253545916.67%3563889.33%51418235560.21%1294220758.63%640111257.55%208415131611511902478
158248230522224614898412690221113374594122140301111374391142464516971120927770234407728287301809567102215414637816.85%4113791.00%51590262860.50%1365237657.45%629117353.62%221616031769563965507
158248230522224614898412690221113374594122140301111374391142464516971120927770234407728287301809567102215414637816.85%4113791.00%51590262860.50%1365237657.45%629117353.62%221616031769563965507
1682492303133258149109412412011121317952412511020211277057114258466724017092857520590684652712194755293114754239221.75%3925386.48%41200232851.55%1196246748.48%541113247.79%216315811850551941482
1772244000710218306-8836151700400120144-24369230031098162-645721837359130091715522730775715774229466774014183517421.08%3106479.35%61039214748.39%933198147.10%547117546.55%170412431834487803388
18724522032003572401173624902100187115723621130110017012545983576399960401499710828260935892984187754168314413219429.28%3157576.19%51491231564.41%1058173560.98%780118166.05%216216641388412781428
1971482001101368230138352580110019311380362312000011751175810036860497206015212986292909231017986200256186816173428223.98%3318873.41%31344241255.72%916185949.27%608120350.54%212116551416395735401
203224402110135567915121010106318451712301100723834551352403750559353841044365335334126451853385581553925.16%1501590.00%3704100669.98%53882864.98%31446966.95%1003756559192369212
Total Regular Season8795222500292728233132198211504382671230141391215969726244412551270151419111536101052612083132557087026118591192990838268253658685892186932069260461070716802452188519.58%440760686.25%58161362746158.76%137302470355.58%72961305355.90%2423417817187385777101385369
Playoff
121064000003818205320000020515532000001813512387010804016138254087857921056130191501020.00%57787.72%317327363.37%15230050.67%7814155.32%2491772357111758
1316106000004232108440000019154862000002317620427511701024883530123121893781112942891102018.18%1291389.92%226348654.12%27453251.50%12623653.39%40928040011919499
14624000001114-3321000005503030000069-3411213210043414404350451474011210628414.29%35294.29%08818447.83%10119452.06%459050.00%151103151457737
1512750000030273734000001620-454100000147714305282110129930601071009934091127217671420.90%52982.69%014335240.63%14941236.17%6316937.28%2781973068613969
16126600000302916510000019118615000001118-712305686000111082690102807927489160176901718.89%641182.81%013536536.99%14937240.05%7118239.01%2861993099414971
Total Playoff5631250000015112031291712000007956232714130000072648621512744252606743371326046243639113493878239793456518.84%3374287.54%5802166048.31%825181045.58%38381846.82%13759581403417678336